八年级上册数学函数教案
函数函数,我们并不熟悉, 八年级 的函数还不算难,认真学习还是可以很好掌握的,这就需要老师提供一份完善的教案了。下面是由我整理的八年级上册数学函数教案,希望对您有用。
八年级上册数学函数教案第一部分
教学目标
1.认识变量、常量. 2.学会用含一个变量的代数式表示另一个变量.
教学重点
1.认识变量、常量. 2.用式子表示变量间关系.
教学难点:用含有一个变量的式子表示另一个变量.
教学过程
Ⅰ.提出问题,创设情境
情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶时间为t小时.
1.请同学们根据题意填写下表:
2.在以上这个过程中,变化的量是
________.不变化的量是__________.
3.试用含t的式子表示s.
Ⅱ.导入新课
首先让学生思考上面的几个问题,可以互相讨论一下,然后回答.
从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60•千米,即240千米,5小时行驶5×60千米,即300千米„„因此行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60•千米/小时是不变的量.
这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、•里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时.
[活动]
1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.•怎样用含x的式子表示y?
2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?
引导学生通过合理、正确的思维 方法 探索出变化规律.
结论:
1.早场电影票房收入:150×10=1500(元);日场电影票房收入:205×10=2050(元) 晚场电影票房收入:310×10=3100(元); 关系式:y=10x
2.挂1kg重物时弹簧长度: 1×0.5+10=10.5(cm)
挂2kg重物时弹簧长度:2×0.5+10=11(cm);挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)
关系式:L=0.5m+10
通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,•弹簧长度L都是变量.而票价10元,弹簧原长10cm„„都是常量.
八年级上册数学函数教案第二部分
Ⅲ.随堂练习
1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,•指出其中的常量与变量,并写出关系式.
2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h•变化关系式,并指出其中常量与变量.
解:1.买1支铅笔价值 1×0.2=0.2(元)
买2支铅笔价值 2×0.2=0.4(元)
买x支铅笔价值 x×0.2=0.2x(元)
所以 y=0.2x
其中单价0.2元/支是常量,总价y元与支数x是变量.
2.根据三角形面积公式可知:
当高h为1cm时,面积S=
当高h为2cm时,面积S=
当高为hcm,面积S=1
21212222×5×1=2.5cm×5×2=5cm2 2 ×5×h=2.5hcm2
其中底边长为5cm是常量,面积S与高h是变量.
Ⅳ.课时小结
本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要意义.
1.确定事物变化中的变量与常量.
第 3 页 共 46 页
2.尝试运算寻求变量间存在的规律.
3.利用学过的有关知识公式确定关系区.
八年级上册数学函数教案第三部分
Ⅴ.课后作业
1、 课后相关习题
2、 思考:瓶子或罐头盒等物体常如下图那样堆放.试确定瓶子总数y与层数x之间的关系式.
过程:要求变量间关系式,需首先知道两个变量间存在的规律是什么.不妨尝试堆放,找出规律,再寻求确定关系式的
办法.
结论:从题意可知:
堆放1层,总数y=1
堆放2层,总数y=1+2
堆放3层,总数y=1+2+3
„ „
堆放x层,总数y=1+2+3+„x 即y=
备课资料
1.若球体体积为V,半径为R,则V=R3.其中变量是_______、•_______,常3412x(x+1)
量是________.
2.夏季高山上温度从山脚起每升高100米降低0.7℃,已知山脚下温度是23℃,则温度y与上升高度x之间关系式为__________.
3.汽车开始行驶时油箱内有油40升,如果每小时耗油5升,•则油箱内余油量Q升与行驶时间t小时的关系是_________.
答案: 1.V R ;2.y=23°-340.7x100;3.Q=40-5t.
八年级数学函数怎么学
八年级的函数说难不难,说简单也不简单,关键是要练。要记。八年级数学函数怎么学呢?下面我整理了八年级数学函数学习方法,供你参考。 八年级数学函数学习方法如下 一、理解二次函数的内涵及本质. 二次函数y=ax2 +bx+c(a≠0,a、b、c是常数)中含有两个变量x、y,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形. 二、熟悉几个特殊型二次函数的图象及性质. 1、通过描点,观察y=ax2、y=ax2+k、y=a(x+h)2图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式. 2、理解图象的平移口诀“加上减下,加左减右”. y=ax2→y=a(x+h)2+k “加上减下”是针对k而言的,“加左减右”是针对h而言的. 总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移. 3、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征; 4、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图象来判别二次函数的系数a、b、c、△以及由系数组成的代数式的符号等问题. 三、要充分利用抛物线“顶点”的作用. 1、要能准确灵活地求出“顶点”.形如y=a(x+h)2+K→顶点(-h,k),对于其它形式的二次函数,我们可化为顶点式而求出顶点. 2、理解顶点、对称轴、函数最值三者的关系.若顶点为(-h,k),则对称轴为x=-h,y最大(小)=k;反之,若对称轴为x=m,y最值=n,则顶点为(m,n);理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果. 3、利用顶点画草图.在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象. 四、理解掌握抛物线与坐标轴交点的求法. 一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标.如果方程无实数根,则说明抛物线与x轴无交点. 从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与x轴的交点个数.答案补充 学理科东西学会求本质 做类推 二次函数都是抛物线函数(它的函数轨迹就像平推出去一个球的运动轨迹,当然这个不重要) 因此 把握它的函数图像就能把握二次函数 在函数图像中 注意几点(标准式y=ax^2+bx+c,且a不等于0): 1、开口方向与二次项系数a有关 正 则开口向上 反之反是。 2、必有一个极值点,也是最值点。如果开口向上,很容易想象这个极值点应该是最小点 反之反是。且极值点的横坐标为-b/2a。极值点很容易出应用题。 3、不一定和x轴有交点。当根的判定式Δ=b^2-4ac0时,有两个交点,对应方程有2个实数解。 4、不等式。如果你把上面3点搞清楚了 参考函数图像 不等式你就一定会解了 初二数学函数学习口诀 正比例函数的鉴别 判断正比例函数,检验当分两步走。 一量表示另一量,是与否。 若有还要看取值,全体实数都要有。 正比例函数是否,辨别需分两步走。 一量表示另一量,有没有。 若有再去看取值,全体实数都需要。 区分正比例函数,衡量可分两步走。 正比例函数的图象与性质 正比函数图直线,经过和原点。 K正一三负二四,变化趋势记心间。 K正左低右边高,同大同小向爬山。 K负左高右边低,一大另小下山峦。 一次函数 一次函数图直线,经过点。 K正左低右边高,越走越高向爬山。 K负左高右边低,越来越低很明显。 K称斜率b截距,截距为零变正函。 反比例函数 反比函数双曲线,经过点。 K正一三负二四,两轴是它渐近线。 K正左高右边低,一三象限滑下山。 K负左低右边高,二四象限如爬山。 二次函数 二次方程零换y,二次函数便出现。 全体实数定义域,图像叫做抛物线。 抛物线有对称轴,两边单调正相反。 A定开口及大小,线轴交点叫顶点。 顶点非高即最低。上低下高很显眼。 如果要画抛物线,平移也可去描点, 提取配方定顶点,两条途径再挑选。 列表描点后连线,平移规律记心间。 左加右减括号内,号外上加下要减。 二次方程零换y,就得到二次函数。 图像叫做抛物线,定义域全体实数。 A定开口及大小,开口向上是正数。 绝对值大开口小,开口向下A负数。 抛物线有对称轴,增减特性可看图。 线轴交点叫顶点,顶点纵标最值出。 如果要画抛物线,描点平移两条路。 提取配方定顶点,平移描点皆成图。 列表描点后连线,三点大致定全图。 若要平移也不难,先画基础抛物线, 顶点移到新位置,开口大小随基础。
8年级数学上册一次函数测试题
努力做 八年级 数学试题就是光,成功就是影。没有光哪儿来影?下面我给大家分享一些8年级数学上册一次函数测试题,大家快来跟我一起看看吧。
8年级数学上册一次函数试题
一、选择题
1.下列函数关系中表示一次函数的有( )
①y=2x+1 ② ③ ④s=60t ⑤y=100﹣25x.
A.1个B.2个C.3个D.4个
2.下列函数中,图象经过原点的为( )
A.y=5x+1B.y=﹣5x﹣1C.y=﹣ D.y=
3.如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为( )
A.(0,0)B.( ,﹣ )C.( ,﹣ )D.(﹣ , )
4.若y=(m﹣2)x+(m2﹣4)是正比例函数,则m的取值是( )
A.2B.﹣2C.±2D.任意实数
5.如图,线段AB对应的函数表达式为( )
A.y=﹣ x+2B.y=﹣ x+2
C.y=﹣ x+2(0≤x≤3)D.y=﹣ x+20(0
八年级上册数学一次函数的知识和练习题
2009—2010年度撒拉溪中学八年级上《一次函数》测试卷
班级 姓名 学号 得分
温馨提示:亲爱的同学们,经过这一章的学习,相信你已经拥有了一次函数的许多知识财富!下面这套试卷是为了展示你对本章的学习效果而设计的,只要你仔细审题,认真作答,遇到困难时不要轻易言弃,就一定会有出色的表现!本试卷共120分,用120分钟完成,制卷者:周杰
一、选择题:(每小题3分,共33分)
1、如果 是正比例函数,那么a的值是( )
A、-1 B、0或1 C、-1或1 D、1
2、过第三象限的直线是( )
A、y=-3x+4 B、y=-3x C、y=-3x-3 D、y=-3x+7
3、若一次函数 的图象与y轴交点的纵坐标互为相反数,则m的值为( )
A、-2 B、3 C、-2或3 D、-3
4、下列函数(1)y=πx (2)y=2x-1 (3)y= (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( )
A 4个 B 3个 C 2个 D 1个
5、已知点(-4,y1),(2,y2)都在直线y=- x+2上,则y1 y2大小关系是( )
A y1 >y2 (B)y1 =y2 (C)y1 <y2 (D)不能比较
6、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )
A B C D
7、.已知一次函数y=kx+b,当x增加3时,减小2,则k的值是( )
A B C D
8、已知一次函数y=kx+b的图象如图一-8所示,则k,b的符号是( )
A k>0,b>0 B k>0,b0 D k<0,b<0
(一-8) (一-10)
9、已知一次函数y=ax+4与y=bx-2的图象在x轴上相交于同一点,则 的值是( )
A 4 B -2 C D -
10、弹簧的长度y cm与所挂物体的质量x(kg)的关系是一次函数,图象如图一-10所示,则弹簧不挂物体时的长度是( )
A 8.3cm B 10cm C 10.5cm D 11cm
11、若点(1,m)和点(n,2)都在直线y=x-1上,则m,n的值为 ( )
A m=0,n=2 B m=3,n=0 C m=0,n=3 D m=2,n=3
二、填空题:(每小题3分,共33分)
1、已知一次函数y=kx-k+4的图象与y轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________
2、中国电信宣布,从2001年2月1日起,县城和农村电话收费标准一样,在县内通话3分钟内的收费是0.2元,每超1分钟加收0.1元,则电话费 (元)与通话时间 ( 分, 为正整数)的函数关系是
3、如果点A(—2,a)在函数y= x+3的图象上,那么a的值等于
4、某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元 . 小彬经常来该店租碟,若每月租碟数量为x张.
(1)写出零星租碟方式应付金额y1(元)与租碟数量x(张)之间的函数关系式:
(2)写出会员卡租碟方式应付金额y2(元 )与租碟数量x(张)之间的函数关系式:
(3)小彬选取 租碟方式更合算。
5、若函数y= -2xm+2是正比例函数,则m的值是
6、一次函数y= -2x+4的图象与x轴交点坐标是 ,与y轴交点坐标是 图象与坐标轴所围成的三角形面积是 .
7、已知一次函数 +3,则 = .
8、一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为:
9、若函数 是一次函数,则 = ;一次函数经过 象限。
10、已知一次函数y=kx+b是正比例函数y= - x向上平移3个单位所得,则k= ;b=
11、直线y=k1x+4和直线y=k2x-1的交点在x轴上,那么k1:k2= 。
三、解答题。
1、已知函数y=(2m+1)x+m -3
(1)若函数图象经过原点,求m的值
(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
2、已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求
(1)a的值
(2)k,b的值
(3)这两个函数图象与x轴所围成的三角形面积.
3、已知y -2与x成正比,且当x=1时,y= -6
(1)求y与x之间的函数关系式
(2)若点(a,2)在这个函数图象上,求a
4、(5分)某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下图所示。
(1)分别写出用租书卡和会员卡租书金额y(元)与租书时间x(天)之间的关系式。
(2)两种租书方式每天的收费是多少元?(x<100)
50
20
O
100
y/天
x/天
租书卡
会员卡
5、在同一坐标系中,作出函数y= -2x与y= x+1的图象.通过图象你能说出它们的交点坐标是什么吗?在图上标出此点
6、一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)试求降价前y与x之间的关系式
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
7、为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:
设某户每月用水量x(立方米),应交水费y(元)
月份
用水量(m3)
收费(元)
9
5
7.5
10
9
27
(1) 求a,c的值
(2) 当x≤6,x≥6时,分别写出y于x的函数关系式
(3) 若该户11月份用水量为8立方米,求该户11月份水费是多少元?
参考答案
一、
1、D 2、C 3、B 4、B 5、A 6、D 7、D 8、D 9、D 10、A 11、C
二、
1、y=6x-2
2、y=0.1t+0.2(t≥3)
3、4
4、(1)y=x
(2)y=0.4x+12
(3)当x<20时,第一种合算;当x>20时,第二种合算;当x=20时,两种一样合算
5、3
6、(2,0);(0,4);4
7、-1
8、y=2x+10
9、-3;二、一、四
10、 ;3
11、-4∶1
三、
1、解:(1)∵y=(2m+1)x+m-3经过原点
∴m-3=0
∴m=3
(2) 这个函数是正比例函数,且y随着x的增大而减小。
∴2m+1<0
∴m<
2、解:(1)∵y=kx+b与y= x交于点(2,a)
∴a= 2
∴a=1
即交点坐标为(2,1)
(2)y=kx+b与y= x交于点(2,1)且y=kx+b经过(-1, -5)
∴
解之得:
(3)由(2)可知
∴一次函数y=kx+b的关系式为y=2x-3
一次函数y=2x-3和正比例y= x的图象如图
∴B( ,0)、A(2,1)
∴OB=
AC=
∴S△ABO= OB·AC
= 2
=
3、解:(1)∵y -2与x成正比
∴y -2=kx
当x=1时,y= -6
∴-6-2=k
∴k=-8
∴y与x之间的函数关系式为:y=-8x+2
(2) 点(a,2)在函数y=-8x+2的图象上
∴-8 a+2=2
∴a=0
4、解:(1)根据题意和图象可设:
两种卡租书,租书金额y(元)与租书时间x(天)之间的关系分别为:
50
20
O
100
y/天
x/天
租书卡
会员卡
租书卡:y=k1x
会员卡:y=k2x+20
由图象可知两直线的交点是(10,50)
∴10k1=50
10k2+20=50
分别解之得:
∴k1=5 k2=3
∴租书卡的函数关系式为:y=5x
会员卡的函数关系式为:y=3x+20
(2)租书卡每天的收费是5元;
会员卡每天的收费是3元。
5、解:
函数y= -2x与y= x+1的图象如图所示
通过图象你能说出它们的交点坐标是( , )
∵函数y= -2x与y= x+1的图象有交点
∴函数值和自变量的值都相同
∴ -2x= x+1
解之得x=
把x= 代入y= -2x
解之得y=
6、解:(1)农民自带的零钱是5元
(2) 根据题意和图象可设:
降价前y与x之间的关系式为:y=kx+b
∵y=kx+b经过(0,5)和(30,20)
∴
解之得
∴降价前y与x之间的关系式为:y= x+5(0≤x≤30)
(3) ∵当x=0时y=5,当x=30时y=20
∴每千克的土豆价格是(20-5)÷(30-0)=0.5
(4)降价后售出的土豆千克数为(a-30)千克
降价后售出的土豆的钱数为(26-20)元
∴(a-30) 0.4=(26-20)
解之得a=70千克
即他一共带了70千克土豆
7、、解:(1)根据题意和表格可知
解之得
(2)当x≤6时, y与x的函数关系式为:
y=1.5x (x≤6)
当x≥6时,y与x的函数关系式为:
y=6(x-6)+9 (x≥6)
即:y=6x-27(x≥6)
(3)11月份用水量为8立方米,该户11月份水费是:
∵x=8≥6
∴y=6x-27
=6 8-27
=21
即11月份用水量为8立方米,该户11月份水费是21元