四边形包括哪些呢?
由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,四边形有正方形,矩形,平行四边形,菱形,梯形。顺次连接任意四边形上的中点所得四边形叫中点四边形,中点四边形都是平行四边形。菱形的中点四边形是矩形,矩形中点四边形是菱形,等腰梯形的中点四边形是菱形,正方形中点四边形就是正方形。四边形不具有三角形的稳定性,易于变形。但正是由于四边形不稳定具有的活动性,使其在生活中有广泛的应用,如拉伸门等拉伸、折叠结构。依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。中点四边形的形状取决于原四边形的对角线。若原四边形的对角线垂直,则中点四边形为矩形;若原四边形的对角线相等,则中点四边形为菱形;若原四边形的对角线既垂直又相等,则中点四边形为正方形。
四边形的性质与判定是什么?
四边形的性质:依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形,矩形的中点四边形是菱形,正方形的中点四边形是正方形,平行四边形的中点四边形是平行四边形。判定:四边形的内角和和外角和均为360度。四边形不稳定性四边形不具有三角形的稳定性,易于变形。但正是由于四边形不稳定具有的活动性,使其在生活中有广泛的应用,如拉伸门等拉伸、折叠结构。
四边形性质
四边形性质可参考下方。1、如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。(简述为“平行四边形的两组对边分别相等”。)2、如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。(简述为“平行四边形的两组对角分别相等”。)3、如果一个四边形是平行四边形,那么这个四边形的邻角互补。(简述为“平行四边形的邻角互补”。)4、夹在两条平行线间的平行线段相等。5、如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
四边形的定义及性质
由不在同一直线上四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形。我整理了四边形的相关知识点。 四边形性质 1.如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。 (简述为“平行四边形的两组对边分别相等”) 2.如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。 (简述为“平行四边形的两组对角分别相等”) 3.如果一个四边形是平行四边形,那么这个四边形的邻角互补 (简述为“平行四边形的邻角互补”) 4.夹在两条平行线间的平行线段相等。 5.如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。 平行四边形定义 两组对边分别平行的四边形叫做平行四边形。 1.平行四边形属于平面图形。 2.平行四边形属于四边形。 3.平行四边形属于中心对称图形。 平行四边判定 1.两组对边分别平行的四边形叫做平行四边形。(定义) 2.两组对边分别相等的四边形是平行四边形。 3.对角线互相平分的四边形是平行四边形。 4.一组对边平行且相等的四边形叫做平行四边形。
四边形的性质与判定
四边形的性质:依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形,矩形的中点四边形是菱形,正方形的中点四边形是正方形,平行四边形的中点四边形是平行四边形。由不在同一直线上的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,由凸四边形和凹四边形组成。顺次连接任意四边形上的中点所得四边形叫中点四边形,中点四边形都是平行四边形。菱形的中点四边形是矩形,矩形中点四边形是菱形,等腰梯形的中点四边形是菱形,正方形中点四边形就是正方形。