三角形法则

时间:2024-10-11 19:05:09编辑:流行君

三角形法则有哪些?

1、加法:已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。2、减法:AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连中点、指被减。3、数乘:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ = 0时,λa=0。扩展资料:已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2

三角形的法则是什么?

向量三角形法则口诀是首尾相连,首连尾,方向指向末向量,首首相连,尾连尾,方向指向被减向量。三角形定则是指两个力或者其他任何矢量合成,其合力应当为将一个力的起始点移动到另一个力的终止点,合力为从第一个的起点到第二个的终点,三角形定则是平行四边形定则的简化。有时为了方便也可以只画出一半的平行四边形,也就是力的三角形法则。向量三角形的内容三角形向量及面积分配定理,由三角形内一点I向三顶点ABC形成向量将三角形面积分配为a,b,c,三角形向量及面积定理可通过在二维坐标系中利用矩阵计算面积后,通过大除法得出面积比值。在平面内,有n个向量,首尾相连,最后一个向量的末端与第一个向量的始端相连,则最后这一个向量,方向由第一个向量的始端指向最末一个向量的末端就是n个向量之和,三角形法则就是向量AB加向量BC等于向量AC,这种计算法则叫做向量加法的三角形法则,简记为首尾相连,连接首尾,指向终点。

上一篇:历史文化

下一篇:没有了