分部积分法

时间:2024-10-05 02:49:51编辑:流行君

分部积分公式是什么?

分部积分公式:∫u'vdx=uv-∫uv'dx。分部积分:(uv)'=u'v+uv'得:u'v=(uv)'-uv'两边积分得:∫u'vdx=∫(uv)'dx-∫uv'dx。即:∫u'vdx=uv-∫uv'dx,这就是分部积分公式,也可简写为:∫vdu=uv-∫udv。积分基本公式1、∫0dx=c2、∫x^udx=(x^u+1)/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c

分部积分公式是什么?

分部积分:(uv)'=u'v+uv'。得:u'v=(uv)'-uv'。两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx。即:∫ u'v dx = uv - ∫ uv' dx,这就是分部积分公式。也可简写为:∫ v du = uv - ∫ u dv。相关信息:  积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。

分部积分法是怎样计算的?

∫xlnxdx=x²lnx/2-x²/4+c计算过程:根据分部积分法的公式,,则设v=x²/2,u=lnx。则∫lnxd(x²/2)=∫xlnxdx=x²lnx/2-∫x²*1/(2x)dx=x²lnx/2-∫x/2dx=x²lnx/2-x²/4+c扩展资料:分部积分法,是微积分学中的一类重要的、基本的计算积分的方法。它的主要原理是利用两个相乘函数的微分公式,将所要求的积分转化为另外较为简单的函数的积分。根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂三指”。分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分。参考资料:百度百科_分部积分法

分部积分法怎么计算?

∫(xe^2x)dx=∫1/2xd(e^2x)=1/2xe^2x-1/2∫e^2xdx=1/2xe^2x-1/4∫e^2xd(2x)=1/2xe^2x-1/4e^2x+C=1/4(2x-1)e^2x+C扩展资料运用的方法:分部积分法分部积分法是由微分的乘法法则和微积分基本定理推导而来的。原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。在运用分部积分法时,恰当地选取u 和d v 是解决问题的关键。选取u 和d v 的经验顺序是反对幂指三,其表示反三角函数、对数函数、幂函数(多项式函数)、指数函数和三角函数。即被积函数中出现上述五类函数中的两个函数乘积时次序在前的通常设为u,次序在后的与d x 结合在一起设为d v 。在进行分部积分运算时,如能把上述规律和一些常用的积分技巧和方法相结合,常常能收到事半功倍的效果。参考资料:百度百科–分部积分法

上一篇:去马赛克软件

下一篇:没有了