对撞机有什么用 其原理是什么
1、其主要作用是积累并加速相继由前级加速器注入的两束粒子流,到一定束流强度及一定能量时使其在相向运动状态下进行对撞,以产生足够高的相互作用反应率,从而便于测量。
2、对撞机是测量高能粒子实验的仪器,目的是要发现‘新物理-新粒子’,包括场能效粒子-超对称粒子-超额维度量子等。
3、同时对撞机也是一种‘粒子机制’的规律,是超出‘粒子标准模型’以外的新物理-新粒子探索,并自然界在存在着‘正负电子对撞机体’和‘中子与电子的非常规耦合’体制机制。所以对撞机在高能粒子物理-凝聚态-粒子天体物理有很重要的建造意义。
对撞机对人类有什么用
1、其主要作用是积累并加速相继由前级加速器注入的两束粒子流,到一定束流强度及一定能量时使其在相向运动状态下进行对撞,以产生足够高的相互作用反应率,从而便于测量。2、对撞机是测量高能粒子实验的仪器,目的是要发现‘新物理-新粒子’,包括场能效粒子-超对称粒子-超额维度量子等。3、同时对撞机也是一种‘粒子机制’的规律,是超出‘粒子标准模型’以外的新物理-新粒子探索,并自然界在存在着‘正负电子对撞机体’和‘中子与电子的非常规耦合’体制机制。所以对撞机在高能粒子物理-凝聚态-粒子天体物理有很重要的建造意义。
北京正负电子对撞机是什么时候科研成功的?
北京正负电子对撞机是1983年列人国家重点工程的科研项目之一。中国科学院高能物理研究所会同多方力量在充分吸取世界先进技术的基础上,仅用四年时间,就出色地完成了对撞机的设计、研制、生产、安装、调试任务。1988年10月19日,中国第一座高能加速器——北京正负电子对撞机首次对撞成功。它能一次对撞成功,表明对撞机的各种设备、部件的质量、安装调试的水平在世界上也属一流。
建成后的北京正负电子对撞机,是一台可以使正、负电子束,在同一储存环里沿着相反的方向加速,并在指定地点发生对头碰撞的巨型机器。正负电子的能量各为22亿至28亿电子伏。这台大型电子对撞机建筑在地下6米深的隧道内,由电子注人器、储存环、探测器及数据处理中心、同步辐射区等主要部分组成。在长达240米的储存环里,电子与质子(正电子)的速度被加快到接近于光速,并在加速过程中相互撞击,由此产生各种效应,可以为科学家探索物质基元的奥秘提供线索,可以用来研究比质子和中子更深一个层次的夸克,特别是粲粒子的相互作用和运动规律。此外,由于电子或质子做高速圆周运动时,有很强的光伴随着放出,这种同步辐射是一种理想的光源,它可广泛地用于固体物理、表面科学、生命科学、微电子学等的研究和应用。
北京正负电子对撞机的建成,是我国继原子弹、氢弹爆炸成功、人造卫星上天后,在高科技领域的又一重大突破性成就,使中国成为继美国、瑞士、日本之后第四个拥有这种先进设备的国家。根据它同时具有粒子物理和同步辐射应用研究的特点,北京正负电子对撞机国家实验室对外开放,成为跨部门、跨学科共同享用的实验研究基地,为中国粒子物理和同步辐射应用研究开辟了广阔的前景,揭开了中国高能物理研究的新篇章。我国科学家在这台加速器上不断取得新的科学成果,其中有一些是国际粒子物理界都公认的取得的最重要的成果之一。这项工程被认为是中国科技史上最大的科研工程,创造了建设速度快、投资省、质量好、水平高的奇迹。
为了适应世界高能物理的飞速发展对对撞机性能的更高要求,我国于2004年1月8日全面实施北京正负电子对撞机重大改造工程。科学家将采用当今世界上最先进的双环叉对撞技术“改造”对撞机,即在对撞机现有的储存环内增建一个储存环,使得正负电子分别在各自的储存环内运动,在对撞区实现对撞。正电子和负电子对撞的束团数目从单环时的1对增加到97对,连同其他技术措施,将使对撞机的重要参数之一——亮度——在目前水平上提高约100倍。改造后的北京正负电子对撞机将在世界同类型装置中继续保持领先地位,届时将成为国际上最先进的双环对撞机之一。
北京正负电子对撞机的建设历程
北京正负电子对撞机(BEPC)是在邓小平同志和周恩来总理的亲切关怀下建设的国家大科学装置。总投资为2.4亿元,由中科院高能物理所负责建造。1972年8月,张文裕等18位科技工作者给周恩来总理写信,反映对发展中国高能物理研究的意见和希望。1972年9月11日,周恩来总理对关于建设中国高能加速器实验基地报告的复信中指示:“这件事不能再延迟了。科学院必须把基础科学和理论研究抓起来,同时又要把理论研究与科学实验结合起来。高能物理研究和高能加速器的预制研究、应该成为科学院要抓的主要项目之一。”1973年2月,中国科学院高能物理研究所正式成立。1975年3月,国家计委向国务院提出了《关于高能加速器预制研究和建造问题的报告》(七五三工程)。刚刚复出主持中央工作的小平同志同意了这个报告,并转送周总理批示。1977年,邓小平同志在国家科委、国家计委《关于加快建设高能物理实验中心的请示报告》(八七工程)上批示:“拟同意”。1981年1月,国家计委决定停止十三陵“高能物理实验中心”的筹建工作(即八七工程),对玉泉路高能加速器预制工程提出调整方案。1981年1月10日,小平同志对聂华桐等14位科学家的信做了批示:“请方毅同志召集一个专家会议进行论证”,讨论高能加速器的建造方案。1981年9月22日-25日,中科院数理学部在北京召开“2.2GeV正负电子对撞机预制研究方案论证会”。会议对高能所提出的注入器、储存环和探测器的预制研究项目进行了讨论,决定开展对撞机工程预制研究。1981年5月,高能所在征求国内外专家意见的基础上提出了建造2×22亿电子伏正负电子对撞机的方案,在由国家科委和中国科学院召开的专家论证会上得到原则通过。1981年12日22日,邓小平同志在中 国科学院关于建造2.2GeV正负电子对撞机建议报告上批示:“这项工程进行到这个程度不宜中断,他们所提方案比较切实可行,我赞成加以批准,不再犹虑。”1982年1月21日,高能所向中科院报送《玉泉路工程调整计划任务书》,计划建造一台2×22亿电子伏正负电子对撞机。1982年,高能所完成预制研究方案的初步设计,试制关键部件样机。1982年6月19日,高能所派出21名科技人员组成的考察组到美国斯坦福直线加速器中心进行设计考察,完成了对撞机工程初步设计第三稿,基本确定加速器的主要参数。1983年4月25日,国务院批准国家计委《关于审批2×22亿电子伏正负电子对撞机建设计划的请示报告》。同意新建一台能量为2×22亿电子伏正负电子对撞机,工程正式立项。1983年,开始进行重点非标部件的预制研究。1983年12月15日,中央书记处第103次会议决定将北京正负电子对撞机(BEPC)工程列入国家重点工程建设项目,并成立由中国科学院、国家计委、国家经委、北京市的谷羽、林宗棠、张寿、张百发组成工程领导小组,谷羽任组长(1986年,周光召院长接任工程领导小组组长)。工程领导小组办公室设在中国科学院。14个部委组成了工程非标准设备协调小组,组织全国上百个科研单位、工厂、高等院校大力协同攻关,土建工程由北京市负责全力保证。1984年6月25日-7月4日,BEPC扩初设计审查会在京召开。会议通过了技术审查小组对工程的审查报告,并建议国家有关部门批准这项工程的扩初设计。1984年8月15日,小平同志在对撞机工程领导小组报送中央的简报上批示“我们的加速器必须保证如期甚至提前完成”。1984年9月,国务院批准了国家计委”关于审批北京正负电子对撞机(即8312工程)建设任务和规模的报告”(国家计委科[1984]1899号),明确了一机二用”的方针,增加了同步辐射实验区的建设。批准总投资为2亿4千万元(含引进用汇2500万美元),总建筑面积为54700平方米。工程建设实行经理负责制的投资包干责任制。1984年10月7日,BEPC破土动工。邓小平同志与党和国家领导来到高能所参加奠基典礼,为奠基石铲了第一锨土,并亲切接见了参加工程建设的科技人员和职工代表。邓小平同志为基石题写了“中国科学院高能物理研究所北京正负电子对撞机国家实验室”的题词。他说:“我相信这件事不会错”。1985年至1987年6月,BEPC主要部件批量生产,八大非标设备陆续验收。1986年5月6日,BEPC工程总体安装正式开始。谷羽、林宗棠、岳致中等领导及300多位代表出席安装开工典礼。1986年6月,BEPC注入器第一批部件进入隧道完成安装。1987年6月,BEPC储存环和北京谱仪开始全面安装、调试。1987年12月,BEPC注入器总调成功,电子束流注入到储存环,并观测到了同步辐射。电子束能量为1.17GeV,脉冲流强140mA。1988年7月,正电子注入储存环并积累。1988年10月16日,BEPC首次实现正负电子对撞,亮度达到8×1027/㎝2.s。完成了小平同志提出的“我们的加速器必须保证如期甚至提前完成”的目标。1988年10月20日,《人民日报》报道这一成就,称“这是我国继原子弹、氢弹爆炸成功、人造卫星上天之后,在高科技领域又一重大突破性成就”,“它的建成和对撞成功,为我国粒子物理和同步辐射应用开辟了广阔的前景,揭开了我国高能物理研究的新篇章”。1988年10月24日,邓小平等党和国家领导人视察北京正负电子对撞机工程,表示祝贺,并慰问参加工程建设的代表。邓小平同志发表了“中国必须在高科技领域占有一席之地”的重要讲话。1988年12月,BEPC对撞峰值亮度达到设计指标。1989年4月,北京谱仪推至对撞点上安装就位,开始总体检验,用已获得的巴巴事例进行刻度。1989年5月,北京谱仪投入试运行。1989年7月5日,北京正负电子对撞机和北京谱仪通过技术鉴定。1989年9月,北京谱仪(BES)开始物理工作。1989年8月15日,BEPC辐射防护和剂量监测系统通过技术鉴定。1989年12月8日,北京同步辐射装置(BSRF)三个前端区、一块扭摆磁铁、三条光束线、两个实验站通过国家技术鉴定开始投入运行。鉴定委员会由29位专家组成。1990年7月10日,对BEPC工程总体、土建工程、建安工程、器材设备、财务、档案等进行国家预验收。1990年7月21日,北京正负电子对撞机通过国家验收。1991年,同步辐射装置从调试转入试运行,并首次向国内用户开放。1991年,高能所计算中心网络与美国SLAC实验室及国家能源超级计算中心(NERSC)连接。1991年8月13日,北京正负电子对撞机国家实验室成立,方守贤任主任,丁大钊、郑志鹏任副主任,何祚庥院士为学术委员会主任。1992年4月22日,北京谱仪合作组在美国物理学会上报告了τ粒子质量测量结果,获得国际知名科学家的好评。τ轻子质量mτ精确测量是验证标准模型理论中轻子普适性的一个重要实验。1991年11月7日--1992年1月20日,北京谱仪合作组进行了τ轻子质量测量的数据获取工作,所获结果:Mt=1776.9±0.4±0.2MeV,与国际1990年版数据表PDG给出的世均值相比,比原实验数据降低了7.2MeV,纠正了过去约 7MeV偏离,精度提高了8倍,被誉为1992年最重要的物理成果之一。1993年1月7日,“τ轻子质量的精确测定结果”被评为1992年度全国十大科技成就之一。1993年3月,高能所计算中心建成64K BPS高速网络,并与世界各高能物理实验中心相连,用于通讯和数据传输。同时,还为国内60余个研究单位和大学提供电子邮件和信息检索服务。1993年5月,中科院批准《北京正负电子对撞机改进项目可行性研究报告》、《北京谱仪改进项目可行性研究报告》。1994年5月,高能所计算机网络正式加入Internet和WWW。1995年4月,国家拨专款开展τ-C工厂可行性研究。1995年,“τ轻子质量的精确测定结果”获国家自然科学二等奖。1995-1998年,北京谱仪进行了升级改造(BESII)。1998年,“J/ψ粒子共振参数的精确测量”获中国科学院自然科学二等奖。1999年2月7日,BEPC/BES/BSRF改进项目通过鉴定。BEPC综合性能大幅度提高,实现了稳定高效运行,年运行时间达到九个半月以上,故障率仅为6%左右,在束流能量1.89GeV时亮度达到1031cm-2s-1,日平均事例数提高了3-4倍,达到了国际同类加速器的先进水平。1999年6月28日,国务院科教领导小组决定增加对BEPC运行改进与未来发展R&D的经费。1999年8月3日,BEPC/BES/BSRF通过改进验收。1993年6月,开始实施BSRF的技术改造和新建多周期永磁插入件3W1与相应的光束线。1996年3月,BSRF的3W1永磁插入件通过技术鉴定。1997年7月,高能所向中科院上报“北京正负电子对撞机下一步发展预制研究项目建议书”,提出对BEPC进行重大改造的单环麻花轨道的改造方案。1997年,“北京谱仪Ds物理的研究”获中科院自然科学奖一等奖。1999年6月,中科院向国家科教领导小组第五次会议提交了“中国高能物理发展战略”,汇报了中国高能物理发展目标和中长期发展规划和BEPCII方案。国家科教领导小组安排了设备的改进和,并决定增加BEPC年度运行经费。1999年,北京谱仪在2-5GeV能区的R值精确测量取得重要成果,得到国际高能物理界的高度评价。5GeV以下的R值是标准模型计算不确定性的重要部分,北京谱仪国际合作组充分把握了国际高能物理发展的最新动态,选定了这一在理论上有全局性重大意义、在实验上极富挑战性的课题,精心设计了全能区的实验方案。此项实验对加速器和探测器的性能及运行水平,对实验技术和数据分析方法以及理论模型等都是严峻的挑战。经过可行性研究,国际合作组把测量能区定为2-5GeV,精度目标定在7%左右,该指标对北京正负电子对撞机运行能量和北京谱仪测量精度的要求已经接近极限。为了完成R值精确测量实验,北京正负电子对撞机发挥了运行以来的最高水平,在如此宽的能量范围内长时间保持了长束流寿命和高亮度的稳定运行,这在国际高能物理实验研究中也属领先水平。北京谱仪在2-5GeV能区的近百个能量点上进行能量扫描测量,并在数据分析中,发展和应用了多项创新方法和理论模型,使测量的系统误差大大降低,平均测量精度达到6.6%,比国际上原有的实验结果提高了2-3倍。北京正负电子对撞机的未来发展2000年5月22-24日,“中国高能物理发展战略研讨会”在高能所召开。80余名中外高能物理、加速器技术、高能天体物理等领域的研究人员参加了大会。会议就BEPCⅡ的物理目标、加速器技术及非加速器物理实验等方面的内容进行了研讨。会后,高能所继续组织精干力量对BEPCⅡ方案进行深入研究,包括对其物理目标,加速器和探测器改进方案进行具体论证,争取尽早确定加速器改进的基本方案,在适当的时机召开国际评审会对方案进行评审,早日立项。2000年7月27日,国务院科教领导小组第七次会议审议并原则通过《关于中国高能物理和先进加速器发展目标的汇报》,同意在北京正负电子对撞机取得成功的基础上,投入4亿元对该装置进行重大改造。2000年,“φ(2s)粒子及粲夸克偶素物理的实验研究”获中科院自然科学一等奖。此项研究应用北京谱仪采集的380万ψ(2S)数据样本,完成了包括hc(1S)、J/ψ (1S)、ψ (2S)、χc0(1P)、χc1(1P)和χc2(1P)6个粲偶素粒子在内的质量、总宽度、部分宽度以及衰变分支比等50余项重要参数的测量,还进行了hc(2S)及hc(1P)等粒子的寻找。其中21项分支比数据属国际上首次测量,相当一部分数据具有当前国际最高精度。同时还指出了粒子数据表中涉及数据处理及数据引用的多处重要错误,建议和订正了15项ψ(2S)衰变数据。以上结果使国际粲夸克偶素物理领域的数据面貌得到了明显改观。2001年3月31日午夜,从北京谱仪(BES)控制室传来振奋人心的捷报:从2000年11月初开始的本轮对撞机运行所获取的在线J/ψ强子事例达到了2500万,相当于离线分析强子事例2700万以上。加上2000年获取的2400万,已提前实现了我们向国家科教领导小组承诺的两年获取5000万J/ψ事例的计划。这样,BES拥有的J/ψ事例比世界上同能区对撞机上得到J/ψ总数的4倍还要多。2001年9月3-7日,高能所承办的代表世界高能物理和核物理计算最高学术水平的国际高能物理计算会议(CHEP2001)在京召开。2001年,“J/ψ衰变物理的实验研究 ”获中科院自然科学二等奖。2002年1月15日,“中国粲夸克偶素物理实验研究获重大进展”被评为2001年中国基础研究十大新闻之一。2002年2月,“φ(2s)粒子及粲夸克偶素物理的实验研究”获2001年度国家自然科学奖二等奖。2002年,国际粒子数据手册(PDG)将多年不变的R值图作了重大改动,增加了BES的全部结果,国际粒子物理数据库收录了全部R值数据。2003年7月,北京谱仪国际合作组宣布在质子反质子阈能处发现一个可能的新共振态,再次引起国际、国内高能物理界的广泛关注。该项研究成果的论文于2003年7月在世界最具权威和最有影响的物理学期刊《物理学评论快报》(Phys. Rev. Lett.)上发表。所谓共振态,是一种寿命极短的、不稳定的粒子,它具有和稳定的强子类似的量子数,但是它可以通过强相互作用衰变,其寿命一般短到10-20s~10-24s。很难在探测器中留下径迹而直接被探测到,只能通过其衰变产物来观测。2003年11月8日,经过4年的努力,总投资5000多万元的BSRF改造圆满完成。新建的两个插入件,以及新建和改建的光束线和实验站都已投入运行,除一个子项目外,均已通过专家验收,BSRF的综合性能全面大幅度提高。2003年,2-5GeV能区正负电子对撞强子反应截面的精确测量研究集体获中国科学院2003年度杰出科技成就奖,北京市科学技术一等奖。
正负电子对撞机和正负离子对撞机有什么不同?有什么作用?
用磁场,让带电的正负离子加速到很高速度,然后碰撞,这种机器就是正负离子对撞机,不同于其他离子加速器的是,一般的离子加速器用离子轰击靶,通常的靶是静止的,而这种对撞机是相互碰撞,这样可以获得成倍的相对速度,以便与研究更微观的离子。
原子核里面的质子都带正电,而他们却能够聚集在那么小的空间内,这是因为它们之间有“强作用力”这种作用力比起电子与原子核间的电磁力(弱作用力)要强很多,破坏依赖电磁力的离子件事化合物分解尚且需要加热到高温,可想,要克服核内的强作用力,是原子核破碎需要多大的能量?
加速器就是为了产生巨大的能量,让离子以高速撞击,来是原子核里面的更微观的离子跑出来,供人们研究。