fft原理

时间:2024-09-24 14:16:18编辑:流行君

傅立叶变换

傅立叶变换分类:




四种原信号图例:







一般是从傅立叶级数开始导出傅立叶变换的。傅立叶级数很漂亮,物理意义相当清晰。它表示一个周期信号可以用一族正交完备的正弦波通过线性组合得到

正弦函数是简单的周期函数:y=Asin(wt+Φ),其中周期为2π/w,A为振幅,w为角频率,Φ为初相位。

1. 傅立叶级数公式

给定一个周期为T的函数x(t),那么它可以表示为无穷级数:

其中傅里叶系数为:




2. 傅立叶级数性质

收敛性

在闭区间上满足 狄利克雷 条件的函数表示成的傅里叶级数都收敛。狄利克雷条件如下:




正交性

所谓的两个不同向量正交是指它们的内积为0,这也就意味着这两个向量之间没有任何相关性,例如,在三维欧式空间中,互相垂直的向量之间是正交的。三角函数族的正交性用公式表示出来就是:

奇偶性

奇函数f0可以表示为正弦级数,而偶函数fe则可以表示成余弦级数:

几种常见波形的傅里叶级数展开式:

1. 梯形波(奇函数)





如上图所示,该梯形波是一个周期为T的奇函数,幅值为Amax,上升沿时间为d,在区间[0,PI/2]的函数表达式为:

由奇偶性可知,该波形在区间[-PI/2,PI/2]的傅里叶级数展开式为:




其中傅里叶系数为:




将f(t)函数代入傅里叶系数表达式中,可得:







https://www.jianshu.com/p/be892506be75

计算机主要处理离散周期性信号,即周期性离散时间傅里叶变换(DFT)


傅立叶变换的公式是什么?

公式如下图: 傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。 Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ①傅里叶变换 ②傅里叶逆变换 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。

快速傅里叶变换FFT

快速傅里叶变换,即利用计算机计算离散傅里叶变换(DFT)的高效、快速计算方法的统称,简称FFT。快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的。采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著。 扩展资料   FFT的基本思想是把原始的N点序列,依次分解成一系列的'短序列。充分利用DFT计算式中指数因子 所具有的对称性质和周期性质,进而求出这些短序列相应的DFT并进行适当组合,达到删除重复计算,减少乘法运算和简化结构的目的。此后,在这思想基础上又开发了高基和分裂基等快速算法,随着数字技术的高速发展,1976年出现建立在数论和多项式理论基础上的维诺格勒傅里叶变换算法(WFTA)和素因子傅里叶变换算法。它们的共同特点是,当N是素数时,可以将DFT算转化为求循环卷积,从而更进一步减少乘法次数,提高速度。

上一篇:当我再爱你的时候

下一篇:没有了