高一数学必修5

时间:2024-09-23 11:11:25编辑:流行君

高三数学必修五知识点总结

【 #高三# 导语】一轮复习中,考生依据课本对基础知识点和考点,进行了全面的复习扫描,已建构起高考基本的学科知识、学科能力和思维方法。二轮复习是承上启下的重要一环,要在一轮复习的基础上,依据考纲,落实重点,突破难点,找准自己的增长点,提高复习备考的实效性。 为你整理了《高三数学必修五知识点总结》希望可以帮助你学习! 1.高三数学必修五知识点总结   斜边是指直角三角形中最长的那条边,也指不是构成直角的那条边。在勾股定理中,斜边称作“弦”。   三角形斜边长等于根号下两直角边的平方和,即斜边c=√(a^2+b^2)   解答过程如下:   (1)在直角三角形中满足勾股定理—在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。数学表达式:a2+b2=c2   (2)a2+b2=c2求c,因为c是一条边,所以就是求大于0的一个根。即c=√(a2+b2)。   在几何中,斜边是直角三角形的最长边,与直角相对。直角三角形的斜边的长度可以使用毕达哥拉斯定理找到,该定理表示斜边长度的平方等于另外两边长度的平方和。例如,如果其中一方的长度为3(平方,9),另一方的长度为4(平方,16),那么它们的正方形加起来为25。斜边的长度为平方根25,即5。 2.高三数学必修五知识点总结   一个推导   利用错位相减法推导等比数列的前n项和:   Sn=a1+a1q+a1q2+…+a1qn-1,   同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,   两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).   两个防范   (1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.   (2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.   三种方法   等比数列的判断方法有:   (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N_),则{an}是等比数列.   (2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N_),则数列{an}是等比数列.   (3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N_),则{an}是等比数列.   注:前两种方法也可用来证明一个数列为等比数列. 3.高三数学必修五知识点总结   1.求导法则:   (c)/=0这里c是常数。即常数的导数值为0。   (xn)/=nxn-1特别地:(x)/=1(x-1)/=()/=-x-2(f(x)±g(x))/=f/(x)±g/(x)(k?f(x))/=k?f/(x)   2.导数的几何物理意义:   k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。   V=s/(t)表示即时速度。a=v/(t)表示加速度。   3.导数的应用:   ①求切线的斜率。   ②导数与函数的单调性的关系   已知   (1)分析的定义域;   (2)求导数   (3)解不等式,解集在定义域内的部分为增区间   (4)解不等式,解集在定义域内的部分为减区间。   我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数在某个区间内可导。   ③求极值、求最值。   注意:极值≠最值。函数f(x)在区间[a,b]上的值为极大值和f(a)、f(b)中的一个。最小值为极小值和f(a)、f(b)中最小的一个。   f/(x0)=0不能得到当x=x0时,函数有极值。   但是,当x=x0时,函数有极值f/(x0)=0   判断极值,还需结合函数的单调性说明。   4.导数的常规问题:   (1)刻画函数(比初等方法精确细微);   (2)同几何中切线联系(导数方法可用于研究平面曲线的切线);   (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。   关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。   导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 4.高三数学必修五知识点总结   不等式的基本性质:   性质1:如果a>b,b>c,那么a>c(不等式的传递性).   性质2:如果a>b,那么a+c>b+c(不等式的可加性).   性质3:如果a>b,c>0,那么ac>bc;如果a>b,cd,那么a+c>b+d.   性质5:如果a>b>0,c>d>0,那么ac>bd.   性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.   例1:判断下列命题的真假,并说明理由.   若a>b,c=d,则ac2>bd2;(假)   若,则a>b;(真)   若a>b且abb;(真)   若|a|b2;(充要条件)   命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.   a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)   说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.   例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.   说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想. 5.高三数学必修五知识点总结   1、等比中项   如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。   有关系:   注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。   2、等比数列通项公式   an=a1xq’(n—1)(其中首项是a1,公比是q)   an=Sn—S(n—1)(n≥2)   前n项和   当q≠1时,等比数列的前n项和的公式为   Sn=a1(1—q’n)/(1—q)=(a1—a1xq’n)/(1—q)(q≠1)   当q=1时,等比数列的前n项和的公式为   Sn=na1   3、等比数列前n项和与通项的关系   an=a1=s1(n=1)   an=sn—s(n—1)(n≥2)   4、等比数列性质   (1)若m、n、p、q∈Nx,且m+n=p+q,则am·an=ap·aq;   (2)在等比数列中,依次每k项之和仍成等比数列。   (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}   (4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。   记πn=a1·a2…an,则有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1   另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。   (5)等比数列前n项之和Sn=a1(1—q’n)/(1—q)   (6)任意两项am,an的关系为an=am·q’(n—m)   (7)在等比数列中,首项a1与公比q都不为零。   注意:上述公式中a’n表示a的n次方。

高中数学必修五知识点总结

有很多高三学生反映数学必修五的知识点很难,为了帮助学生能更好的学习好数学,我为大家收集并整理了一些高中数学必修五的知识点,下面我为大家整理了关于高中数学必修五知识点总结,希望能对大家有帮助。 高中数学必修五:差数列的基本性质 ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d. ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd. ⑶若{ a }、{ b }为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列. ⑷对任何m、n ,在等差数列{ a }中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性. ⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等差数列时,有:a + a + a + … = a + a + a + … . ⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差). ⑺如果{ a }是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列{ a }中,a -a = a -a = md .(其中m、k、 ) ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项. ⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数. ⑽设a ,a ,a 为等差数列中的三项,且a 与a ,a 与a 的项距差之比 = ( ≠-1),则a = . 高中数学必修五:等差数列前n项和公式S 的基本性质 ⑴数列{ a }为等差数列的充要条件是:数列{ a }的前n项和S 可以写成S = an + bn的形式(其中a、b为常数). ⑵在等差数列{ a }中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S -S = a , = . ⑶若数列{ a }为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为 . ⑷若两个等差数列{ a }、{ b }的前n项和分别是S 、T (n为奇数),则 = . ⑸在等差数列{ a }中,S = a,S = b (n>m),则S = (a-b). ⑹等差数列{a }中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上. ⑺记等差数列{a }的前n项和为S .①若a >0,公差d0,则当a ≤0且a ≥0时,S 最小. 高中数学必修五:等比数列的基本性质 ⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q ( m为等距离的项数之差). ⑵对任何m、n ,在等比数列{ a }中有:a = a · q ,特别地,当m = 1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性. ⑶一般地,如果t ,k,p,…,m,n,r,…皆为自然数,且t + k,p,…,m + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等比数列时,有:a .a .a .… = a .a .a .… .. ⑷若{ a }是公比为q的等比数列,则{| a |}、{a }、{ka }、{ }也是等比数列,其公比分别为| q |}、{q }、{q}、{ }. ⑸如果{ a }是等比数列,公比为q,那么,a ,a ,a ,…,a ,…是以q 为公比的等比数列. ⑹如果{ a }是等比数列,那么对任意在n ,都有a ·a = a ·q >0. ⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积. ⑻当q>1且a >0或00且01时,等比数列为递减数列;当q = 1时,等比数列为常数列;当q<0时,等比数列为摆动数列. 高中数学必修五:等比数列前n项和公式S 的基本性质 ⑴如果数列{a }是公比为q 的等比数列,那么,它的前n项和公式是S = 也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q = 1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q = 1和q≠1进行讨论. ⑵当已知a ,q,n时,用公式S = ;当已知a ,q,a 时,用公式S = . ⑶若S 是以q为公比的等比数列,则有S = S +qS .⑵ ⑷若数列{ a }为等比数列,则S ,S -S ,S -S ,…仍然成等比数列. ⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S 与T ,次n项和与次n项积分别为S 与T ,最后n项和与n项积分别为S 与T ,则S ,S ,S 成等比数列,T ,T ,T 亦成等比数列 万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α) cos2α=(1-tan^2α)/(1+tan^2α) tan2α=2tanα/(1-tan^2α) 升幂公式:1+cosα=2cos^2(α/2) 1-cosα=2sin^2(α/2) 1±sinα=(sin(α/2)±cos(α/2))^2 降幂公式:cos^2α=(1+cos2α)/2 sin^2α=(1-cos2α)/21)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα, tan(2kπ+α)=tanα,cot(2kπ+α)=cotα,其中k∈Z; (2) sin(-α)= -sinα,cos(-α)=cosα, tan(-α)= -tanα,cot(-α)= -cotα (3)sin(π+α)= -sinα,cos(π+α)= -cosα, tan(π+α)=tanα,cot(π+α)=cotα (4)sin(π-α)=sinα,cos(π-α)= -cosα, tan(π-α)= -tanα,cot(π-α)= -cotα (5)sin(π/2-α)=cosα,cos(π/2-α)=sinα, tan(π/2-α)=cotα,cot(π/2-α)=tanα (6) sin(π/2+α)= cosα,cos(π/2+α)= -sinα, tan(π/2+α)= -cotα,cot(π/2+α)= -tanα (7)sin(3π/2+α)= -cosα,cos(3π/2+α)=sinα, tan(3π/2+α)= -cotα,cot(3π/2+α)= -tanα (8)sin(3π/2-α)= -cosα,cos(3π/2-α)= -sinα, tan(3π/2-α)= cotα,cot(3π/2-α)= tanα (k·π/2±α) ,其中k∈Z 注意:为方便做题,习惯我们把α看成是一个位于第一象限且小于90°的角; 当k是奇数的时候,等式右边的三角函数发生变化,如sin变成cos.偶数则不变; 用角(k·π/2±α)所在的象限确定等式右边三角函数的正负. 例:tan(3π/2 +α)= -cotα ∵在这个式子中k=3,是奇数,因此等式右边应变为cot 又,∵角(3π/2 +α)在第四象限,tan在第四象限为负值,因此为使等式成立,等式右边应为-cotα. 三角函数在各象限中的正负分布 sin:第一第二象限中为正;第三第四象限中为负 cos:第一第四象限中为正;第二第三象限中为负 cot、tan:第一第三象限中为正;第二第四象限中为负。

高一数学必修五数列

解法一:1》:解a1=s1=1/2
sn=1-an
s(n-1)=1-a(n-1)
2式相减得
an=sn-s(n-1)=a(n-1)-an
an=1/2*a(n-1)
可以知道an是等比数列.q=1/2
an=a1*q^(n-1)=1/2^n
2》解答:bn=3+log4an=3+log4(1/2^n)=3+lg(1/2)^n/lg4=3-nlg2/(2lg2)=3-n/2
3-n/2>=0,n<=6.
故当n=0
T6=|b1|+|b2|+...+|b6|=b1+b2+...+b6=[(3-1/2)+(3-6/2)]*6/2=7.5
当n>6时,bn<0,|bn|=-bn
故Tn=b1+b2+...+b6-(b7+b8+...+bn)=2T6-(b1+...+bn)=2*7.5-(2.5+3-n/2)n/2=7.5-(5.5-n/2)n/2 解法二:(1)an+Sn=1,a(n+1)+S(n+1)=1
两式相减:a(n+1)-an+a(n+1)=0
则an=2a(n+1),又a1=S1,则a1=1/2
所以an=1/2^n
(2) bn=3+log4an=3-n/2
则n≤6时,bn≥0
n>6时,bn<0
所以n≤6时Tn=(b1+bn)n/2=n(11-n)/4
n>6时Tn=(n-6)(n-5)/4+15/2


上一篇:ig是什么意思

下一篇:没有了