四则混合运算指的是哪四则
四则混合运算指的是加法、减法、乘法、除法这四种计算法则。而四种混合运算指的就是由两个或两个以上的运算符号及括号,把多个数合并成一个数的运算。
四则运算知识对于小学生来说非常的重要,这是他们在这一阶段必须掌握的基础性知识。如果在小学阶段将四则运算知识掌握,并且能够在此基础之上具备一定的计算能力,那么对于其日后学习和掌握更深层次的运算具有很大的帮助。
四则混合运算指的是哪四则?
四则运算 指的是:加、减、乘、除 ;四则混合运算 指的是:包括有加、减、乘、除以及括号(大括号、中括号、小括号)的算式运算四则混合运算,指加法、减法、乘法、除法。 其中,加法和减法叫做第一级运算;乘法和除法叫做第二级运算同级运算时,从左到右依次计算;两级运算时,先算乘除,后算加减。有括号时,先算括号里面的,再算括号外面的;有多层括号时,先算小括号里的,再算中括号里面的,再算大括号里面的,最后算括号外面的。要是有乘方,最先算乘方。在混合运算中,先算括号内的数 ,括号从小到大,如有乘方先算乘方,然后从高级到低级。脱式计算即递等式计算,把计算过程完整写出来的运算,也就是脱离竖式的计算。在计算混合运算时,通常是一步计算一个算式(逐步计算,等号不能写在原式上),要写出每一步的过程。一般来说,等号要往前,不与第一行对齐。
四则混合运算指的是哪四则?
四则混合运算,指加法、减法、乘法、除法。 其中,加法和减法叫做第一级运算;乘法和除法叫做第二级运算。四则运算 指的是加、减、乘、除 ;四则混合运算 指的是:包括有加、减、乘、除以及括号(大括号、中括号、小括号)的算式运算。整数加法计算法则1)要把相同数位对齐,再把相同计数单位上的数相加;2)哪一位满十就向前一位进。整数减法计算法则1)要把相同数位对齐,再把相同计数单位上的数相减;2)哪一位不够减就向前一位退一作十。整数乘法计算法则1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;2)然后把几次乘得的数加起来。(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。)整数的除法计算法则1)从被除数的高位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;2)除到被除数的哪一位,就在那一位上面写上商;(如果哪一位不够商“1”,就在哪一位上商“0”。)3)每次除后余下的数必须比除数小。
四则混合运算的简便方法
常见的简便运算的方法
1.凑整法
运用补充数或分解数的方法凑成整十、整百、整千的数在小数、分数中凑成整数。
例如:9.9 +99.9 +999.9= 10 + 100+1000-0.3
2.拆分法
把算式中的某个数拆分为能够运算简便的数。
例如:99×63=(100-1) x63
3.运用积(商)不变的性质
运用积不变的性质变形。
如: 2222×3333 +1111 ×3334
=1111 ×6666+1111 ×3334
=1111 × (6666 + 3334)
=1111 × 10000
= 11110000
4. 转换运算
根据运算的定义和性质,有时可以用一种运算代替另一种运算。
用乘法代替加法:23 +23 +23 +37=23×3 +37 = 106
用乘法代替除法:1.24×0.25+2.76÷4
=1.24×0.25 +2.76×0.25
=(1.24 +2.76) ×0.25
=4×0.25
=1
用除法代替乘法:3.2×0.125=3.2÷8=0.4
四则混合运算的概念
1、加法、减法、乘法和除法统称四则运算。2、在没有括号的算式中,如果只有加减法,或者只有乘除法,要从左到右依次计算。3、在没有括号的算式里,既有乘、除法又有加、减法的,要先计算乘除法,再计算加减法。4、算式有括号,要先算括号内的,再算括号外的;大、中、小括号的计算顺序为小—中—大。括号里面的计算顺序遵循以上1、2、3条的计算顺序。知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。字母表示:a—b—c=a—c—b;a—b+c=a+c—b7、连除定律:①一个数连续除以两个数, 等于这个数除以后两个数的积,得数不变。字母表示:a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c;②在三个数的乘除法运算中,交换后两个数的位置,得数不变。字母表示:a÷b÷c=a÷c÷b;a÷b×c=a×c÷b