dijkstra

时间:2024-08-19 17:01:04编辑:流行君

dijkstra算法求最短路径

dijkstra算法求最短路径方法如下:1、选定A节点并初始化,如上述步骤3所示2、执行上述 4、5两步骤,找出U集合中路径最短的节点D 加入S集合,并根据条件 if ( 'D 到 B,C,E 的距离' + 'AD 距离' < 'A 到 B,C,E 的距离' ) 来更新U集合。3、这时候 A->B, A->C 都为3,没关系。其实这时候他俩都是最短距离,如果从算法逻辑来讲的话,会先取到B点。而这个时候 if 条件变成了 if ( 'B 到 C,E 的距离' + 'AB 距离' B距离 其实为 A->D->B。Dijkstra算法保证能找到一条从初始点到目标点的最短路径,只要所有的边都有一个非负的代价值。在上图中,粉红色的结点是初始结点,蓝色的是目标点,而类菱形的有色区域则是Dijkstra算法扫描过的区域。颜色最淡的区域是那些离初始点最远的,因而形成探测过程(exploration)的边境(frontier)。因而Dijkstra算法可以找到一条最短的路径,但是效率上并不高。数据结构--Dijkstra算法最清楚的讲解。

最短路径 - Dijkstra算法

算法每次都查找距离起始点最近的点,那么剩下的点距离起始点的距离一定比当前点大。

1.选定A节点并初始化,如上述步骤3所示

2.执行上述 4、5两步骤,找出U集合中路径最短的节点D 加入S集合,并根据条件 if ( 'D 到 B,C,E 的距离' + 'AD 距离' < 'A 到 B,C,E 的距离' ) 来更新U集合

3.这时候 A->B, A->C 都为3,没关系。其实这时候他俩都是最短距离,如果从算法逻辑来讲的话,会先取到B点。而这个时候 if 条件变成了 if ( 'B 到 C,E 的距离' + 'AB 距离' B距离 其实为 A->D->B

思路就是这样,往后就是大同小异了
算法结束

(图片来源于网络)

Dijkstra算法保证能找到一条从初始点到目标点的最短路径,只要所有的边都有一个非负的代价值。在上图中,粉红色的结点是初始结点,蓝色的是目标点,而类菱形的有色区域则是Dijkstra算法扫描过的区域。颜色最淡的区域是那些离初始点最远的,因而形成探测过程(exploration)的边境(frontier)。因而Dijkstra算法可以找到一条最短的路径,但是效率上并不高。

数据结构--Dijkstra算法最清楚的讲解


最短路径算法介绍

  1、从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径叫做最短路径。解决最短路的问题有以下算法,Dijkstra算法,Bellman-Ford算法,Floyd算法和SPFA算法等。

  2、定义:最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括:确定起点的最短路径问题- 即已知起始结点,求最短路径的问题。适合使用Dijkstra算法。

  3、确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。

  4、确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径。全局最短路径问题- 求图中所有的最短路径。适合使用Floyd-Warshall算法。


最短路径算法

最短路径的算法主要有三种:floyd算法、Dijkstra算法、Bellman-Ford(贝尔曼-福特)一、floyd算法基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。 二、Dijkstra算法算法步骤:a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则正常有权值,若u不是v的出边邻接点,则权值为∞。b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。d.重复步骤b和c直到所有顶点都包含在S中。执行过程如图所示:三、Bellman-Ford(贝尔曼-福特)算法的流程如下:给定图G(V, E)(其中V、E分别为图G的顶点集与边集),源点s,1.数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n]为, Distant[s]为0;2.以下操作循环执行至多n-1次,n为顶点数: 对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] = Distant[u]+w(u, v)。w(u, v)为边e(u,v)的权值; 若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;3.为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说该图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

上一篇:本田srv

下一篇:建筑设计任务书