boost-buck电路的意义是什么?
buck型是降压型的dc-dc,而boost是升压式的dc-dc。buck型的基本原理: 电源通过一个电感给负载供电、同时电感储存一部分能量、然后将电源断开,只由电感给负载供电、如此周期性的工作,通过调节电源接通的相对时间,来实现输出电压的调节。 boost型的基本原理: 电源先给电感储能,然后,将储了能的电感,当作电源,与原来的电源串联,从而提高输出电压.如此周期性的重复。降压-升压变换器(buck_boost converter)也称为buck_boost转换器,是一种直流-直流转换器。其输出电压大小可以大于输入电压,也可以小于输入电压。降压-升压变换器和返驰式变换器等效,但用单一的电感器来取代变压器。扩展资料;四个开关非反向架构的工作原理。四个开关的变换器结合了升压变换器以及降压变换器,并且将升压变换器和降压变换器的二个二极管都用功率晶体配合同步整流代替,可以因为功率晶体的低电压降让效率再进一步提升。四个开关的变换器可以运作在升压模式或是降压模式。在任一模式中,都只用一个开关控制占空比。另一个只作续流用,其动作恰好和第一个开关相反,另外二个开关则是在固定的位置。参考资料来源;百度百科-降压-升压变换器
buck电路原理
BUCK电路的工作原理可以分为四个阶段:导通阶段:当开关管导通时,电感储存电能,电容充电。关断阶段:当开关管关闭时,电感和电容之间的能量被传递到负载上,此时电感中的电流仍然存在,它会继续流向负载。自由轮振荡阶段:在电感电流流向负载后,开关管关闭,此时电感中的电流无法立即消失,因此电感中的能量会反向传回开关管,驱动二极管导通,这个过程称为自由轮振荡。重复阶段:上述三个阶段重复进行,控制开关管导通的占空比可以通过PWM控制器调整,从而实现输出电压的稳定调节。BUCK电路是一种基于电感储能原理的DC-DC变换器,其涉及到物理中的电磁感应和电能转换的基本原理。在BUCK电路中,通过控制输入占空比可变的PWM波切换开关管的导通和断开状态,将输入电源提供的直流电压转换为可调的低电压输出,从而满足不同电路的供电需求。具体来说,BUCK电路中的电感在导通状态下,将电流通过电感中心核心的磁场转化为磁能,并将磁能存储在电感中。而在断开状态下,由于电感的自感作用,磁场会产生电压,将电磁能转化为电能,并通过输出端向负载供电。因此,通过控制开关管的导通和断开状态,实现了电能在电容和电感之间的周期性转换和调节,最终输出稳定的直流电压。Buck变换器主要包括:开关元件M1,二极管D1,电感L1,电容C1和反馈环路。而一般的反馈环路由四部分组成:采样网络,误差放大器(ErrorAmplifier,E/A),脉宽调制器(PulseWidthModulaTIon,PWM)和驱动电路。由分析可得,Buck变换器的工作过程可分为两部分:1)开关(晶体管)导通:二极管D1截止;电感电流线性增加并储能;电容充电储能;输出电压Vo。2)开关(晶体管)关断:二极管D1导通;电感释放能量;电容放电;输出Vo。