规划模型

时间:2024-07-28 23:37:00编辑:流行君

线性规划模型的优点和缺点有哪些

优点:有统一算法,任何线性规划问题都能求解,解决多变量最优决策的方法。缺点:对于数据的准确性要求高,只能对线性的问题进行规划约束,而且计算量大,有由线性规划演变的非线性规划法等等后续的方法弥补,但是计算量增加许多。线性规划是决策系统的静态最优化数学规划方法之一.它作为经营管理决策中的数学手段,在现代决策中的应用是非常广泛的,它可以用来解决科学研究、工程设计、生产安排、军事指挥、经济规划。扩展资料:1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般是非负的。2、目标函数是决策变量的线性函数,根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。3、约束条件也是决策变量的线性函数。当得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。参考资料来源:百度百科-线性规划

职业生涯规划的特点?职业生涯规划的原则?职业生涯规划的意义?

生涯规划的特点有:可行性;适时性;适应性;持续性。职业生涯规划的原则:利益整合原则;公平、公开原则;协作进行原则。职业生涯规划的意义:认识自我。1、利益整合原则。利益整合是指员工利益与组织利益的整合。这种整合不是牺牲员工的利益,而是处理好员工个人发展和组织发展的关系,寻找个人发展与组织发展的结合点。每个个体都是在一定的组织环境与社会环境中学习发展的,因此,个体必须认可组织的目的和价值观,并把他的价值观、知识和努力集中于组织的需要和机会上。2、公平、公开原则。在职业生涯规划方面,企业在提供有关职业发展的各种信息、教育培训机会、任职机会时,都应当公开其条件标准,保持高度的透明度。这是组织成员的人格受到尊重的体现,是维护管理人员整体积极性的保证。3、协作进行原则。协作进行原则,即职业生涯规划的各项活动,都要由组织与员工双方共同制定、共同实施、共同参与完成。职业生涯规划本是好事,应当有利于组织与员工双方。但如果缺乏沟通,就可能造成双方的不理解、不配合以至造成风险,因此必须在职业生涯开发管理战略开始前和进行中,建立相互信任的上下级关系。建立互信关系的最有效方法就是始终共同参与、共同制定、共同实施职业生涯规划。

线性规划模型具有哪些特征?

线性规划问题的形式特征,三个要素组成:1、变量或决策变量;2、目标函数;3、约束条件。求解线性规划问题的基本方法是单纯形法,已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。对于只有两个变量的简单的线性规划问题,也可采用图解法求解。这种方法仅适用于只有两个变量的线性规划问题。它的特点是直观而易于理解,但实用价值不大。通过图解法求解可以理解线性规划的一些基本概念。?扩展资料:线性规划建立的数学模型具有以下特点:1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般是非负的。2、目标函数是决策变量的线性函数,根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。3、约束条件也是决策变量的线性函数。当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。参考资料来源:搜狗百科-线性规划


目标规划模型与线性规划模型的相同之处是什么?区别是什么

目标规划是以线性规划为基础而发展起来的,但在运用中,由于要求不同,有不同于线性规划之处: ①目标规划中的目标不是单一目标而是多目标,既有总目标又有分目标。根据总目标建立部门分目标,构成目标网,形成整个目标体系。制定目标时应注意协调各个分目标,消除分目标间的矛盾,以利总目标的实现;各分目标必须服从总目标的实现,不能脱离总目标。 ②线性规划只寻求目标函数的最优值,即最大值或最小值。而目标规划,由于是多目标,其目标函数不是寻求最大值或最小值,而是寻求这些目标与预计成果的最小差距,差距越小,目标实现的可能性越大。目标规划中有超出目标和未达目标两种差距。一般以Y+代表超出目标的差距,Y-代表未达目标的差距。Y+和Y-两者之一必为零,或两者均为零。当目标与预计成果一致时,两者均为零,即没有差距。人们求差距,有时求超过目标的差距,有时求未达目标的差距。目标规划的核心问题是确定目标,然后据以建立模型,求解目标与预计成果的最小差距。


数学建模的方法有哪些?

预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归);归类判别:欧氏距离判别、fisher判别等 ;图论:最短路径求法 ;最优化:列方程组 用lindo 或 lingo软件解 ;其他方法:层次分析法 马尔可夫链 主成分析法 等 。建模常用算法,仅供参考: 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决 问题的算法,同时间=可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 。数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数 据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具) 。线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多 数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用Lindo、Lingo 软件实现) 。图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算 法,涉及到图论的问题可以用这些方法解决,需要认真准备) 。动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算 法设计中比较常用的方法,很多场合可以用到竞赛中) 。最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些 问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助, 但是算法的实现比较困难,需慎重使用) 。网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很 多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 。一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替 积分等思想是非常重要的) 。数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分 析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编 写库函数进行调用) 。图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问 题,通常使用Matlab 进行处理)。

线性规划的优缺点是什么?

线性规划法是解决多变量最优决策的方法,是在各种相互关联的多变量约束条件下,解决或规划一个对象的线性目标函数最优的问题,即给与一定数量的人力、物力和资源,如何应用而能得到最大经济效益。其中目标函数是决策者要求达到目标的数学表达式,用一个极大或极小值表示.约束条件是指实现目标的能力资源和内部条件的限制因素,用一组等式或不等式来表示。线性规划是决策系统的静态最优化数学规划方法之一.它作为经营管理决策中的数学手段,在现代决策中的应用是非常广泛的,它可以用来解决科学研究、工程设计、生产安排、军事指挥、经济规划。缺点:对于数据的准确性要求高,只能对线性的问题进行规划约束,而且计算量大。有由线性规划演变的非线性规划法等等后续的方法弥补,但是计算量增加许多。

线性规划的建模包括哪些内容

简述线性规划的建模包括内容:1、每种产品的单位产量利润是已知的常数。2、由决策变量所受的限制条件确定决策变量所要满足的约束条件。3、由决策变量和所在达到目的之间的函数关系确定目标函数。4、企业的目标是谋求利润的最大。解法求解线性规划问题的基本方法是单纯形法,已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。对于只有两个变量的简单的线性规划问题,也可采用图解法求解。

怎么用excel做线性规划的模型?

设置步骤如下:1、单击“文件——选项——加载项——(Excel加载项)转到”,出现“加载宏”对话框,如下图所示。选择“规划求解加载项”,单击“确定”。2、此时,在“数据”选项卡中出现带有“规划求解”按钮的“分析”组,如下图所示。3、使用Excel求解线性规划问题时,电子表格是输入和输出的载体,因此设计良好的电子表格,更加易于阅读。4、然后将其复制到下方相应的单元格中。单击“数据——分析——规划求解”,出现如下图所示的“规划求解参数”对话框,设计相应的参数。6、并且单击“添加”按钮,添加相应的约束,如下图所示。7、设置好参数后,单击“规划求解参数”对话框中的“求解”按钮,结果如下图所示。

怎么用excel做线性规划的模型

在Excel中加载规划求解模块。Excel2010的步骤是:文件->选项->加载项->转到->勾选上“规划求解加载项”。看题理解后进行数学建模,然后将模型和数据输入在Excel的单元格中。本例的题目为:某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表2-1所示。该工厂每生产一件产品Ⅰ可获利2元,每生产一件产品Ⅱ可获利3元,问应如何安排计划使该工厂获利最多?生产产品I需耗时1单位,生产产品II需要耗时2单位时间,总的单位时间不超过8单位,产品I消耗原料A 4个单位,产品II消耗原材料B 4个单位,其中原料A有16kg,原料B有12kg。建模情况在Excel中表现为附图所示:Excel进行线性规划求解过程如下:1.使用相关函数和运算符表示约束条件和目标函数;2,使用数据中的规划求解模块对已经建好的模型进行数学运算求解。a,选择目标函数区域 b,选择可变参数区域 c,选择并定义约束条件 d选择求解方法,本例采用单纯线性规划。然后确定求解即可。最后在Excel的单元格中会自动填充运算得出的最优化方案。本例中的的最优解为:生产产品I 4件,生产产品II 2 件时得到最大利润14元。

上一篇:精密直线导轨

下一篇:乡村爱情10下部