航模飞机一般用什么发动机?电机还是涡喷?
航模飞机一般用活塞发动机、脉动式喷气发动机、固体火箭发动机和二氧化碳发动机等。活塞发动机多数是二行程单缸内燃机。航空模型规范规定,参加竞赛和纪录飞行的模型发动机汽缸工作容积不大于10毫升,分为1毫升、2.5毫升、5毫升、10毫升等几个主要等级。这些发动机有火花点火发动机、压燃发动机和电热线点火发动机等。火花点火发动机以汽油作燃料,用电火花点火。压燃发动机用煤油和乙醚作燃料,混合气压缩时自燃点火。电热线点火发动机用甲醇为主要燃料,用电热线(铂铱合金丝)点火。航空模型活塞发动机重量很轻,单位汽缸容积功率很高。竞赛用2.5毫升的电热线点火发动机,重150~200克,最大功率可超过0.73千瓦(1马力)。扩展资料航空模型活动从一开始就引起人们浓厚的兴趣,而且千百年来长盛不衰,主要原因就在于它在航空事业的发展和科技人才的培养方面起着十分重要的作用。唐代以后,我国的风筝传到国外,在世界上流传开来。西方有人用风筝做飞行试验,探索制造飞机的可能。美国的莱特兄弟是世界上第一架飞机的制造者,他们的飞机在1903年12月17日试飞成功。他们就是先用大风筝进行种种试验,然后制造出滑翔机,解决了升降、平衡、转弯等问题,最后才把飞机制造成功的。飞机发明之前,航空模型具有强烈的探索性质,在飞机发明之后,航空模型仍然是研究航空科学的必要工具。每一种新飞机的试制,都要先在风洞里用模型进行试验,甚至连航天飞机这样先进的航空器,也要经过模型试验阶段,取得必要的数据,才能获得成功。参考资料来源:百度百科-航模发动机
航模飞机一般用什么发动机?电机还是涡喷?
活塞式航空发动机
是早期在飞机或直升机上应用的航空发动机,用于带动螺旋桨或旋翼。大型活塞式航空发动机的功率可达2500千瓦。后来为功率大、高速性能好的燃气涡轮发动机所取代。但小功率的活塞式航空发动机仍广泛地用于轻型飞机、直升机及超轻型飞机。
燃气涡轮发动机
这种发动机应用最广。包括涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机和涡轮轴发动机,都具有压气机、燃烧室和燃气涡轮。涡轮螺旋桨发动机主要用于时速小于800千米的飞机;涡轮轴发动机主要用作直升机的动力;涡轮风扇发动机主要用于速度更高的飞机;涡轮喷气发动机主要用于超音速飞机。
冲压发动机
其特点是无压气机和燃气涡轮,进入燃烧室的空气利用高速飞行时的冲压作用增压。它构造简单、推力大,特别适用于高速高空飞行。由于不能自行起动和低速下性能欠佳,限制了应用范围,仅用在导弹和空中发射的靶弹上。
其他
上述发动机均由大气中吸取空气作为燃料燃烧的氧化剂,故又称吸空气发动机。其他还有火箭发动机、脉冲发动机和航空电动机。火箭发动机的推进剂(氧化剂和燃烧剂)全部由自身携带,燃料消耗太大,不适于长时间工作,一般作为运载火箭的发动机,在飞机上仅用于短时间加速(如起动加速器)。脉冲发动机主要用于低速靶机和航空模型飞机。由太阳电池驱动的航空电动机仅用于轻型飞机,尚处在试验阶段。
活塞式发动机时期
早期液冷发动机居主导地位。19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。
1903年,美国莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的"飞行者一号"飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。
在飞机用于战争目的的推动下,航空特别是在欧洲开始蓬勃发展,法国在当时处于领先地位。美国虽然发明了动力飞机并且制造了第一架军用飞机,但在参战时连一架可用的新式飞机都没有。在前线的美国航空中队的6287架飞机中有4791架是法国飞机,如装备伊斯潘诺-西扎V型液冷发动机的"斯佩德"战斗机。这种发动机的功率已达130~220kW, 推重比为0.7kW/daN左右。飞机速度超过200km/h,升限6650m。
当时,飞机的飞行速度还比较小,气冷发动机冷却困难。为了冷却,发动机裸露在外,阻力又较大。因此,大多数飞机特别是战斗机采用的是液冷式发动机。期间,1908年由法国塞甘兄弟发明旋转汽缸气冷星型发动机曾风行一时。这种曲轴固定而汽缸旋转的发动机终因功率的增大受到限制,在固定汽缸的气冷星型发动机的冷却问题解决之后退出了历史舞台。
在两次世界大战之间,在活塞式发动机领域出现几项重要的发明:发动机整流罩既减小了飞机阻力,又解决了气冷发动机的冷却困难问题,甚至可以的设计两排或四排汽缸的发动机,为增加功率创造了条件;废气涡轮增压器提高了高空条件下的进气压力,改善了发动机的高空性能;变距螺旋桨可增加螺旋桨的效率和发动机的功率输出;内充金属钠的冷却排气门解决了排气门的过热问题;向汽缸内喷水和甲醇的混合液可在短时内增加功率三分之一;高辛烷值燃料提高了燃油的抗爆性,使汽缸内燃烧前压力由2~3逐步增加到5~6,甚至8~9,既提高了升功率,又降低了耗油率。
从20世纪20年代中期开始,气冷发动机发展迅速,但液冷发动机仍有一席之地在此期间,在整流罩解决了阻力和冷却问题后,气冷星型发动机由于有刚性大,重量轻,可靠性、维修性和生存性好,功率增长潜力大等优点而得到迅速发展,并开始在大型轰炸机、运输机和对地攻击机上取代液冷发动机。在20世纪20年代中期,美国莱特公司和普·惠公司先后发展出单排的"旋风"和"飓风"以及"黄蜂"和"大黄蜂"发动机,最大功率超过400kW,功重比超过1kW/daN。到第二次世界大战爆发时,由于双排气冷星型发动机的研制成功,发动机功率已提高到600~820kW。此时,螺旋桨战斗机的飞行速度已超过500km/h,飞行高度达10000m。
在第二次世纪大战期间,气冷星型发动机继续向大功率方向发展。其中比较著名的有普·惠公司的双排"双黄蜂"((R-2800)和四排"巨黄蜂"(R-4360)。前者在1939年7月1日定型,开始时功率为1230kW, 共发展出5个系列几十个改型,最后功率达到2088kW,用于大量的军民用飞机和直升机。单单为P-47战斗机就生产了24000台R-2800发动机,其中P-47 J的最大速度达805km/h。虽然有争议,但据说这是第二次世界大战中飞得最快的战斗机。这种发动机在航空史上占有特殊的地位。在航空博物馆或航空展览会上,R-2800总是放置在中央位置。甚至有的航空史书上说,如果没有R-2800发动机,在第二次世界大战中盟国的取胜要困难得多。后者有四排28个汽缸,排量为71.5L,功率为2200~3000kW, 是世界上功率最大的活塞式发动机,用于一些大型轰炸机和运输机。1941年,围绕六台R-4360发动机设计的B-36轰炸机是少数推进式飞机之一,但未投入使用。
莱特公司的R-2600和R-3350发动机也是很有名的双排气冷星型发动机。前者在1939推出,功率为1120kW,用于第一架载买票旅客飞越大西洋的波音公司"快帆"314型四发水上飞机以及一些较小的鱼雷机、轰炸机和攻击机。后者在1941年投入使用,开始时功率为2088kW,主要用于著名的B-29"空中堡垒"战略轰炸机。R-3350在战后发展出一种重要改型--涡轮组合发动机。发动机的排气驱动三个沿周向均布的废气涡轮,每个涡轮在最大状态下可发出150kW的功率。这样,R-3350的功率提高到2535kW,耗油率低达0.23kg/(kW·h)。1946年9月,装两台R-3350涡轮组合发动机的P2V1"海王星"飞机创造了18090km的空中不加油的飞行距离世界纪录。液冷发动机与气冷发动机之间的竞争在第二次世界大战中仍在继续。液冷发动机虽然有许多缺点,但它的迎风面积小,对高速战斗机特别有利。而且,战斗机的飞行高度高,受地面火力的威胁小,液冷发动机易损的弱点不突出。所以,它在许多战斗机上得到应用。例如,美国在这次大战中生产量最大的5种战斗机中有4种采用液冷发动机。其中,值得一提的是英国罗-罗公司的梅林发动机。它在1935年11月在"飓风"战斗机上首次飞行时,功率达到708kW;1936年在"喷火"战斗机上飞行时,功率提高到783kW。
航空发动机
这两种飞机都是第二次世界大战期间有名的战斗机,速度分别达到624km/h和750km/h。梅林发动机的功率在战争末期达到1238kW,甚至创造过1491kW的纪录。美国派克公司按专利生产了梅林发动机,用于改装P-51"野马"战斗机,使一种平常的飞机变成战时最优秀的战斗机。"野马"战斗机采用一种不常见的五叶螺旋桨,安装梅林发动机后,最大速度达到760km/h,飞行高度为15000m。除具有当时最快的速度外,"野马"战斗机的另一个突出的优点是有惊人的远航能力,它可以把盟军的轰炸机一直护送到柏林。到战争结束时,"野马"战斗机在空战中共击落敌机4950架,居欧洲战场的首位。而在远东和太平洋战场上,则是由于装备了气冷发动机的F6F"地狱猫"战斗机的参战,才结束了日本"零"式战斗机的霸主地位。航空史学界把"野马"飞机看作螺旋桨战斗机的顶峰之作。
在第二次世界大战开始之后和战后的最主要的技术进展有直接注油、涡轮组合发动机和低压点火。
在两次世界大战的推动下,发动机的性能提高很快,单机功率从不到10 kW增加到2500 kW左右,功率重量比从0.11 kW/daN 提高到1.5 kW/daN左右,升功率从每升排量几千瓦增加到四五十千瓦,耗油率从约0.50 kg/(kW·h)降低到0.23~0.27 kg/(kW·h)。翻修寿命从几十小时延长到2000~3000h。到第二次世界大战结束时,活塞式发动机已经发展得相当成熟,以它为动力的螺旋桨飞机的飞行速度从16km/h提高到近800 km/h,飞行高度达到15000 m。可以说,活塞式发动机已经达到其发展的顶峰。
喷气时代的活塞式发动机
在第二次世界大战结束后,由于涡轮喷气发动机的发明而开创了喷气时代,活塞式发动机逐步退出主要航空领域,但功率小于370 kW的水平对缸活塞式发动机发动机仍广泛应用在轻型低速飞机和直升机上,如行政机、农林机、勘探机、体育运动机、私人飞机和各种无人机,旋转活塞发动机在无人机上崭露头角,而且美国NASA还正在发展用航空煤油的新型二冲程柴油机供下一代小型通用飞机使用。
美国NASA已经实施了一项通用航空推进计划,为未来安全舒适、操作简便和价格低廉的通用轻型飞机提供动力技术。这种轻型飞机大致是4~6座的,飞行速度在365 km/h左右。一个方案是用涡轮风扇发动机,用它的飞机稍大,有6个座位,速度偏高。另一个方案是用狄塞尔循环活塞式发动机,用它的飞机有4个座位,速度偏低。对发动机的要求为: 功率为150 kW; 耗油率0.22 kg/(kW·h); 满足未来的排放要求; 制造和维修成本降低一半。到2000年,该计划已经进行了500h以上的发动机地面试验,功率达到130 kW,耗油率0.23 kg/(kW·h)。
燃气涡轮发动机时期
第二个时期从第二次世界大战结束至今。60年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代,居航空动力的主导地位。在技术发展的推动下(见表1),涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机、桨扇发动机和涡轮轴发动机在不同时期在不同的飞行领域内发挥着各自的作用,使航空器性能跨上一个又一个新的台阶。
涡喷/涡扇发动机
英国的惠特尔和德国的奥海因分别在1937年7月14日和1937年9月研制成功离心式涡轮喷气发动机WU和HeS3B。前者推力为530daN,但1941年5月15日首次试飞的格罗斯特公司E28/39飞机装的是其改进型W1B,推力为540daN,推重比2.20。后者推力为490daN,推重比1.38,于1939年8月27日率先装在亨克尔公司的He-178飞机上试飞成功。这是世界上第一架试飞成功的喷气式飞机,开创了喷气推进新时代和航空事业的新纪元。
世界上第一台实用的涡轮喷气发动机是德国的尤莫-004,1940年10月开始台架试车,1941年12月推力达到980daN,1942年7月18日装在梅塞施米特Me-262飞机上试飞成功。自1944年9月至1945年5月,Me-262共击落盟军飞机613架,自己损失200架(包括非战斗损失)。英国的第一种实用涡轮喷气发动机是1943年4月罗·罗公司推出的威兰德,推力为755daN,推重比2.0。该发动机当年投入生产后即装备"流星"战斗机,于1944年5月交给英国空军使用。该机曾在英吉利海峡上空成功地拦截了德国的V-1导弹。
战后,美、苏、法通过买专利,或借助从德国取得的资料和人员,陆续发展了本国第一代涡轮喷气发动机。其中,美国通用电气公司的J47轴流式涡喷发动机和苏联克里莫夫设计局的RD-45离心式涡喷发动机的推力都在2650daN左右,推重比为2~3,它们分别在1949年和1948年装在F-86和米格-15战斗机上服役。这两种飞机在朝鲜战争期间展开了你死我活的空战。 20世纪50年代初,加力燃烧室的采用使发动机在短时间内能够大幅度提高推力,为飞机突破声障提供足够的推力。典型的发动机有美国的J57和苏联的RD-9B,它们的加力推力分别为7000daN和3250daN,推重比各为3.5和4.5。它们分别装在超声速的单发F-100和双发米格-19战斗机上。
在50年代末和60年代初,各国研制了适合M2以上飞机的一批涡喷发动机,如J79、J75、埃汶、奥林帕斯、阿塔9C、R-11和R-13,推重比已达5~6。在60年代中期还发展出用于M3一级飞机的J58和R-31涡喷发动机。到70年代初,用于"协和"超声速客机的奥林帕斯593涡喷发动机定型,最大推力达到17000daN。从此再没有重要的涡喷发动机问世。
涡扇发动机的发展源于第二次世界大战。世界上第一台运转的涡轮风扇发动机是德国戴姆勒-奔驰研制的DB670(或109-007),于1943年4月在实验台上达到840千克推力,但因技术困难及战争原因没能获得进一步发展。世界上第一种批量生产的涡扇发动机是1959年定型的英国康维,推力为5730daN,用于VC-10、DC-8和波音707客机。涵道比有0.3和0.6两种,耗油率比同时期的涡喷发动机低10%~20%。1960年,美国在JT3C涡喷发动机的基础上改型研制成功JT3D涡扇发动机,推力超过7700daN,涵道比1.4,用于波音707和DC-8客机以及军用运输机。
以后,涡扇发动机向低涵道比的军用加力发动机和高涵道比的民用发动机的两个方向发展。在低涵道比军用加力涡扇发动机方面,20世纪60年代,英、美在民用涡扇发动机的基础上研制出斯贝-MK202和TF30,分别用于英国购买的"鬼怪"F-4M/K战斗机和美国的F111(后又用于F-14战斗机)。它们的推重比与同时期的涡喷发动机差不多,但中间耗油率低,使飞机航程大大增加。在70~80年代,各国研制出推重比8一级的涡扇发动机,如美国的F!00、F404、F110,西欧三国的RB199,前苏联的RD-33和AL-31F。它们装备在一线的第三代战斗机,如F-15、F-16、F-18、"狂风"、米格-29和苏-27。推重比10一级的涡扇发动机已研制成功,即将投入服役。它们包括美国的F-22/F119、西欧的EFA2000/EJ200和法国的"阵风"/M88。其中,F-22/F119具有第四代战斗机代表性特征--超声速巡航、短距起落、超机动性和隐身能力。超声速垂直起飞短距着陆的JSF动力装置F136正在研制之中,预计将于2010~2012年投入服役。
自20世纪70年代第一代推力在20000daN以上的高涵道比(4~6)涡扇发动机投入使用以来,开创了大型宽体客机的新时代。后来,又发展出推力小于20000daN的不同推力级的高涵道比涡扇发动机,广泛用于各种干线和支线客机。10000~15000daN推力级的CFM56系列已生产13000多台,并创造了机上寿命超过30000h的记录。民用涡扇发动机依然投入使用以来,已使巡航耗油率降低一半,噪声下降20dB, CO、UHC、NOX分别减少70%、90%、45%。90年代中期装备波音777投入使用的第二代高涵道比(6~9)涡扇发动机的推力超过35000daN。其中,通用电气公司GE90-115B在2003年2月创造了56900daN的发动机推力世界纪录。普·惠公司正在研制新一代涡扇发动机PW8000,这种齿轮传动涡扇发动机,推力为11 000~16 000daN,涵道比11,耗油率下降9%。
涡桨/涡轴发动机
第一台涡轮螺旋桨发动机为匈牙利于1937年设计、1940年试运转的 Jendrassik Cs-1。该机原计划用于本国Varga RMI-1 X/H型双引擎侦察/轰炸机但该机项目被取消。1942年,英国开始研制本国第一台涡桨发动机罗尔斯-罗伊斯 RB.50 Trent。该机于1944年6月首次运转,经过633小时试车后于1945年9月20日安装在一台格罗斯特“流星”战斗机上,并做了298小时飞行实验。以后,英国、美国和前苏联陆续研制出多种涡桨发动机,如达特、T56、AI-20和AI-24。这些涡桨发动机的耗油率低,起飞推力大,装备了一些重要的运输机和轰炸机。美国在1956年服役的涡桨发动机T56/501,装于C-130运输机、P3-C侦察机和E-2C预警机。它的功率范围为2580~4414 kW ,有多个军民用系列,已生产了17000多台,出口到50多个国家和地区,是世界上生产数量最多的涡桨发动机之一,至今还在生产。前苏联的HK-12M的最达功率达11000kW,用于图-95"熊"式轰炸机、安-22军用运输机和图-114民用运输机。终因螺旋桨在吸收功率、尺寸和飞行速度方面的限制,在大型飞机上涡轮螺旋桨发动机逐步被涡轮风扇发动机所取代,但在中小型运输机和通用飞机上仍有一席之地。其中加拿大普·惠公司的PT6A发动机是典型代表,40年来,这个功率范围为350~1100kW的发动机系列已发展出30多个改型,用于144个国家的近百种飞机,共生产了30000多台。美国在90年代在T56和T406的基础上研制出新一代高速支线飞机用的AE2100是当前最先进的涡桨发动机,功率范围为2983~5966 kW,其起飞耗油率特低,为0.249 kg/(kW·h)。
在20世纪80年代后期,掀起了一阵性能上介于涡桨发动机和涡扇发动机之间的桨扇发动机热。一些著名的发动机公司都在不同程度上进行了预计和试验,其中通用电气公司的无涵道风扇(UDF)GE36曾进行了飞行试验。
从1950年法国透博梅卡公司研制出206 kW的阿都斯特Ⅰ型涡轴发动机并装备美国的S52-5直升机上首飞成功以后,涡轮轴发动机在直升机领域逐步取代活塞式发动机而成为最主要的动力形式。半个世纪以来,涡轴发动机已成功低发展出四代,功重比已从2kW/daN提高到6.8~7.1 kW/daN。第三代涡轴发动机是20世纪70年代设计,80年代投产的产品。主要代表机型有马基拉、T700-GE-701A和TV3-117VM,装备AS322"超美洲豹"、UH-60A、AH-64A、米-24和卡-52。第四代涡轴发动机是20世纪80年代末90年代初开始研制的新一代发动机,代表机型有英、法联合研制的RTM322、美国的T800-LHT-800、德法英联合研制的MTR390和俄罗斯的TVD1500,用于NH-90、EH-101、WAH-64、RAH-66"科曼奇"、PAH-2/HAP/HAC"虎"和卡-52。世界上最大的涡轮轴发动机是乌克兰的D-136,起飞功率为7500 kW,装两台发动机的米-26直升机可运载20 t的货物。以T406涡轮轴发动机为动力的倾转旋翼机V-22突破常规旋翼机400 km/h的飞行速度上限,一下子提高到638 km/h。
航空燃气涡轮发动机问世以后的60年来在技术上取得的重大进步可用下列数字表明:
服役的战斗机发动机推重比从2提高到7~9,已经定型并即将投入使用的达9~10。民用大涵道比涡扇发动机的最大推力已超过50000 daN,巡航耗油率从50年代涡喷发动机1.0 kg/(daN·h)下降到0.55 kg/(daN·h), 噪声已下降20dB,CO、UHC和NOx分别下降70%、90%和45%。
服役的直升机用涡轴发动机的功重比从2kW/daN提高到4.6~6.1 kW/daN,已经定型并即将投入使用的达6.8~7.1 kW/daN。
发动机可靠性和耐久性倍增,军用发动机空中停车率一般为0.2~0.4/1 000发动机飞行小时,民用发动机为0.002~0.02/1 000发动机飞行小时。战斗机发动机整机定型要求通过4300~6000TAC循环试验,相当于平时使用10多年,热端零件寿命达到2 000h;民用发动机热端部件寿命,为7000~10000 h,整机的机上寿命达到15000~20 000 h,也相当使用10年左右。
总之,航空涡轮发动机已经发展得相当成熟,为各种航空器的发展作出了重要贡献,其中包M3一级的战斗/侦察机,具有超声速巡航、隐身、短距起落和超机动能力的战斗机、亚声速垂直起落战斗机、满足180min 双发干线客机延长航程(ETOPS)要求的宽体客机、有效载重大20t的巨型直升机和速度超过600km/h的倾转旋翼机。同时,还为各种航空改型轻型地面燃气轮机打下基础。
航模发动机一般有多少种
航模发动机一般有活塞发动机、脉动式喷气发动机、固体火箭发动机和二氧化碳发动机等。活塞发动机,多数是二行程单缸内燃机。航空模型活塞发动机重量很轻,单位汽缸容积功率很高。竞赛用2、5毫升的电热线点火发动机,重150至200克,最大功率可超过1马力。脉动式喷气发动机,构造简单,分进气道、燃烧室、尾喷管三段。在进气道和燃烧室之间有一个簧片阀,汽油在进气道内喷入后与空气雾化为混合气,经过簧片阀在燃烧室燃烧后由尾喷管排出,产生推力。因此,燃烧以脉动方式进行,可产生几十牛推力。这类发动机只用于线操纵圆周飞行模型飞机。固体火箭发动机,是50年代流行的一种商品发动机,因安全性差、燃料价格高已被淘汰。二氧化碳发动机不是热机,而是以固体二氧化碳气化时体积膨胀来推动活塞的一种活塞发动机,汽缸工作容积极小,是一种小功率发动机,用作轻小型航空模型的动力装置。
什么航模发动机好?
航模发动机分电动机,甲醇内燃机,汽油内燃机,涡喷发动机。如果算上火箭模型的话,还要加上固体火药发动机。电动机:电动机一般选用无刷电机,无刷电机相比有刷电机寿命更长性能更稳定。无刷电机型号的选择:无刷电机型号标称没有一个同一标准,目前比较通用的一种是内径标识法。即表识电机外转子内径,从一定程度上能够表明电机的线圈直径和匝数。新西达电机是国产比较便宜,性价比比较高的电机品牌,新手用足够了。比如“新西达22121400KV”即是一种电机的型号1400KV在下面说明。电机的KV值:电机输入电压每提高1v,电机空载转速提高的量,我们称为KV值。1400KV即说明电机空载情况下,加1V电压,转速为每分钟1400转,2V电压每分钟2800转,依此类推。同型号电机(比如都是2212)KV值越大的电机,价钱越贵,拉力相对KV值小的电机越大(有限的提高,影响拉力最主要的因素还是电机的线圈直径、匝数,直观一点说就是内径。)甲醇内燃机:比较传统的航模发动机。从结构上分2冲程和4冲程两种。结构上的不同就不多说了,查查初中物理课本就能知道。但说性能上的不同:在同等排量下,2冲程所能提供拉力更大,声音更嘈杂(不好听)在同等拉力输出情况下,4冲程更省油,声音更好听些还有一点非常大的不同:油门曲线不同。这是有能力买4冲发动机的人都买4冲的最大理由。你那张纸拿个笔,画一个X轴和一个Y轴(只取第一象限,既只要X\Y轴上的数字都是正数),X轴表示你推油门杆的量,Y轴表示发动机的动力输出量。你觉得什么发动机最好控制?当然是油门杆量是1,动力输出也是1,油门杆是2,动力输出也是2,也就是说油门曲线是一条与X/Y轴都成45度的直线是最好控制的。但是很不幸发动机的油门曲线是一条曲线,4冲程发动机的油门曲线相比2冲程发动机的油门曲线更直一点,更接近最好控制的那条直线。再说从排量上分。航模甲醇发动机排量一般有15、20、40、55、75、90等。这个“15、20。。。90”是表示排量是“0.015、0.02。。。0.09立方英寸”。按照发动机等级不同,配不同大小的飞机。72的四冲程发动机基本上和50的2冲程发动机动力差不多。
航模发动机什么牌子好
你好,很高兴为你服务,为你作出如下解答:目前市面上常见的航模发动机牌子有很多,比如OS、DLE、Saito、Zenoah、KM等。每个牌子的发动机都有其独特的优势,比如OS发动机的稳定性好,DLE发动机的动力强劲,Saito发动机的噪音低,Zenoah发动机的维护方便,KM发动机的价格实惠。因此,选择航模发动机时,要根据自己的需求和喜好,选择最适合自己的发动机牌子。【摘要】
航模发动机什么牌子好【提问】
你好,很高兴为你服务,为你作出如下解答:目前市面上常见的航模发动机牌子有很多,比如OS、DLE、Saito、Zenoah、KM等。每个牌子的发动机都有其独特的优势,比如OS发动机的稳定性好,DLE发动机的动力强劲,Saito发动机的噪音低,Zenoah发动机的维护方便,KM发动机的价格实惠。因此,选择航模发动机时,要根据自己的需求和喜好,选择最适合自己的发动机牌子。【回答】
甲醇航模发动机的燃料配置问题
甲醇与蓖麻油混合量为4:1—5:1,建议4:1.不过动力会稍弱,积碳也会较多。但是对机子好。
强烈建议使用成品油,蓖麻油为植物油,内含很多微小植物残渣,会产生大量积碳。合成油技术已经今非昔比,较蓖麻油有很大优势。所以选用合适的成品油为省事、划算的选择。
硝基甲烷含量是,12-18级,建议含量15%-16%,21-28级,建议含量20-25%。30级以上,不超35%
汽油与甲醇性质完全不同。我们所用的甲醇机是半压然,半点燃。而汽油则需点火启动这种方式。
机油性质不能与甲醇相融合,并且也不是为甲醇机所准备的,较为粘稠,参与燃烧后会留下很多废油与废烟,因甲醇机需排气回压至油箱,也会污染油箱(本人亲身经历)。固不能用机油代替。
甲醇航模发动机的燃料配置问题
现在常见的电热发动机使用甲醇油
素油:普通油:25%蓖麻油加75%甲醇(体积比),用于磨车,性能,状态一般的发动机
标准油:20%蓖麻油加80%甲醇(体积比),用于磨合充分,性能,状态良好的发动机
混合后静置一夜,吸取中层清液过滤后使用
一般来说硝基甲烷的比例是这样的,5-10cc发动机最多添加5%-10%,1.5-5cc发动机最多添加15%-20%,高转速0.8cc发动机最多添加40%左右,添加过多可能烧毁电热塞。
硝基甲烷在试剂店可以买到,500ml大概40-60元,自己配油不太会比买的便宜。
硝基苯在模型燃油中添加确实可以(官方模型资料中有的),好像是做抗爆剂的(我记不清了),但是比例千万不能高,它没有硝基甲烷那样清洁。
汽油在甲醇机上一般不适合用,听说能点着,但是不能维持稳定运转。甲醇机要改汽油机的话需要专门改造。
机油的话,分非常多的种类。常见的,用在发动机上的机油主要有二冲和四冲两种(一般汽车,摩托都是四冲机油)。四冲机油用于独立润滑系统的发动机,这种机油和模型甲醇机的需要区别很大,基本上不能使用。二冲机油(一般割草机等发动机使用的)则基本上可以使用
航空模型发动机的内容提要
本书主要介绍怎样使用航空模型发动机。具体介绍了活塞式发动机的原理、工作过程、结构和燃料,安装使用、清洗维护的方法,以及发动机特性与螺旋桨的配用等;同时还简单地介绍了发动机运转机构及运动零部件的位移、速度和加速度对发动机运行和性能的影响。此外,还介绍了使用发动机所用的主要器材、仪表和工具。本书主要供航空模型普及活动使用及初学者阅读参考,也可供航空模型工作者参考。
航空模型发动机的编辑推荐
本书主要介绍怎样使用航空模型发动机。具体介绍了活塞式发动机的原理、工作过程、结构和燃料,安装使用、清洗维护的方法,以及发动机特性与螺旋桨的配用等;同时还简单地介绍了发动机运转机构及运动零部件的位移、速度和加速度对发动机运行和性能的影响。此外,还介绍了使用发动机所用的主要器材、仪表和工具。本书主要供航空模型普及活动使用及初学者阅读参考,也可供航空模型工作者参考。
航模汽油发动机寿命有多少?
200多小时,已经非常够用了。
在国际航联制定的竞赛规则里明确规定"航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,可遥控的不能载人的航空器。
其技术要求是:
最大飞行重量同燃料在内为五千克;
最大升力面积一百五十平方分米;
最大的翼载荷100克/平方分米;
活塞式发动机最大工作容积10亳升。
航模发动机甲醇燃料时间长了会失效吗
不会, 会挥发但不会失效。 目前醇基燃料有三种: 1.醇水型燃料。就是燃料中含有20%以上的水。甲醇燃料本身就已热值较低,再加上水,使得燃料的热值更低。许多搞醇水燃料的单位声称水加到醇里,再加一定的催化剂可使水分解,产生氢气提高热值。这是一种违反科学原理的错误概念,所以到目前为止,我们所见到醇水型燃料,使用效果都很差,热值根本达不到“醇基民用燃料”行业标准的技术要求,而且使用这种醇水型燃料的灶具气化效果都不好,且灶具结构设计复杂。我们认为这种燃料不能推广。 2.醇烃型燃料。这种燃料主要给粗甲醇加10%的烃类物质来提高燃料的热值。由于加烃类物质,使得醇基燃料贮存与使用时容易产生分层,适当加入助溶剂使醇基燃料与烃类均匀混合不致分层。目前这种燃料使用的较多,但这种燃料的推广一定要控制燃料的配方,最好是不超过3元(不计水)组合成分的燃料配方,即甲醇--助溶剂--烃类。严禁加入有害的有机化学产品作为添加剂,使得配方复杂化。同时最好控制水的含量不超过10%,烃含量应与灶具相适应。 3.醇醚型燃料。醇醚燃料技术是主要由化工部西南化工研究院开发的,这种燃料的特点是将二甲醚大部分溶在甲醇及水中,同时由二甲醚在钢瓶中产生原料供应所需的压力,这样就避免了现有醇水、醇烃型燃料在点火过程中需要外预热与加压的过程,是一种很有前途的燃料。
什么航模发动机好
航模发动机分电动机,甲醇内燃机,汽油内燃机,涡喷发动机。如果算上火箭模型的话,还要加上固体火药发动机。
电动机:电动机一般选用无刷电机,无刷电机相比有刷电机寿命更长性能更稳定。
无刷电机型号的选择:
无刷电机型号标称没有一个同一标准,目前比较通用的一种是内径标识法。即表识电机外转子内径,从一定程度上能够表明电机的线圈直径和匝数。新西达电机是国产比较便宜,性价比比较高的电机品牌,新手用足够了。比如“新西达2212 1400KV”即是一种电机的型号 1400KV在下面说明。
电机的KV值:电机输入电压每提高1v,电机空载转速提高的量,我们称为KV值。1400KV即说明电机空载情况下,加1V电压,转速为每分钟1400转,2V电压每分钟2800转,依此类推。
同型号电机(比如都是2212)KV值越大的电机,价钱越贵,拉力相对KV值小的电机越大(有限的提高,影响拉力最主要的因素还是电机的线圈直径、匝数,直观一点说就是内径。)
甲醇内燃机:比较传统的航模发动机。
从结构上分2冲程和4冲程两种。
结构上的不同就不多说了,查查初中物理课本就能知道。
但说性能上的不同:
在同等排量下,2冲程所能提供拉力更大,声音更嘈杂(不好听)
在同等拉力输出情况下,4冲程更省油,声音更好听些
还有一点非常大的不同:油门曲线不同。这是有能力买4冲发动机的人都买4冲的最大理由。
你那张纸拿个笔,画一个X轴和一个Y轴(只取第一象限,既只要X\Y轴上的数字都是正数),X轴表示你推油门杆的量,Y轴表示发动机的动力输出量。你觉得什么发动机最好控制?当然是油门杆量是1,动力输出也是1,油门杆是2,动力输出也是2,也就是说油门曲线是一条与X/Y轴都成45度的直线是最好控制的。但是很不幸发动机的油门曲线是一条曲线,4冲程发动机的油门曲线相比2冲程发动机的油门曲线更直一点,更接近最好控制的那条直线。
再说从排量上分。航模甲醇发动机排量一般有15、20、40、55、75、90等。这个“15、20。。。90”是表示排量是“0.015、0.02。。。0.09立方英寸”。按照发动机等级不同,配不同大小的飞机。72的四冲程发动机基本上和50的2冲程发动机动力差不多。
再说说航模甲醇发动机品牌:
国内:
三叶——价钱便宜,但是不适合新手使用,因为甲醇内燃机的调整较麻烦,新手调整的水平不到很可能调不出来,使内燃机无法正常运转。且自重相对较大。
国外(日本):
大名鼎鼎的OS——OS牌发动机价钱较高(55级2冲程发动机价钱大概是三叶46级2冲程价钱的两倍),调整相对较容易,新手在有人教的情况下,下点功夫调整能够使发动机正常工作。自重相对国产三叶较轻,工作稳定。
顶级品牌YS——YS四冲程发动机基本上就是F3A赛事的顶级发动机了,功率大、重量轻,YS63四冲程发动机输出功率甚至大于OS72四冲程发动机,性能稳定。
长寿发动机NEYA——也是很好的发动机,号称一个发动机能用三代人,因为活塞是陶瓷的,造价较高,性能稳定,寿命超强。
汽油内燃机:新兴起的汽油动力航模发动机,想玩大飞机、有钱的人的首选。原理、结构和甲醇机一样,但是汽油发动机常见的基本上都是2冲程的。汽油发动机的排量标称比甲醇嫩燃机的排量标称直观很多,一般有26CC、50CC、100CC、150CC、200CC
再说品牌:日本小松发动机是一个分不错的品牌,重量轻、功率大,我还没有在网上看见哪位网友说小松发动机不好的。
国内品牌很多很杂,口碑好些的就是美乐迪了。再有就是DLE。
汽油发动机不太懂,我主要是玩甲醇动力的。
涡喷发动机:价钱超贵,我看见过一个发动机,3W多,工作寿命50小时,超过50小时需返厂维护。一般人是受不了的。我是一般人,所以对涡喷发动机没有关注过。
上面讲的有好些是直接复制我以前回复的其他问题,懒得打字了。理论上讲应该不算抄袭吧?= o =
希望对你有帮助
航空发动机的分类及各类航空发动机的特点
大概可分为两类,吸空气发动机简称吸气式发动机和火箭喷气式发动机。分类详述
飞行器发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否须空气参加工作,飞行器发动机可分为两类,大约如下所示:
1、吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。
2、火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。发动机数目用途
飞机上发动机的数目是由飞机的重量,种类,用途,以及发动机的类型所决定的。
一般来讲,确定发动机个数的首要原则就是重量,轻型飞机或超轻型飞机由于起飞重量较小,多采用1~2台发动机,而大型飞机则一般装有2~4台发动机,甚至更多。
在航空史的早期,由于当时的活塞式发动机单台功率较小,为了驱动一架大型飞机(现在看来那只能算中型飞机)就需要4台以上的发动机,经常会有飞机装有6台、8台、甚至12台之多,这么多的发动机使飞机的结构变得相当复杂,故障率也相当高,因此这些多发飞机大多是昙花一现。
随着推进技术的进步,现代航空喷气式发动机的功率越来越高,推力越来越大,不需要很多台就可以为飞机提供足够的动力,因而近些年来飞机发动机的数目呈减少的趋势,大多数飞机只装有1~2台发动机。但是在一些特殊情况下,如某些适航条例规定作越洋飞行的客机必须有3台以上的发动机,以确保在单发停车时具有足够的续航能力(这些规定已因为双发的波音-777飞机的出现而做了相应的调整),因此当今的远程运输机都采用4台发动机。
至于作战飞机,由于机体较轻,同时对飞机的结构的紧凑性要求较高,其发动机的数目为1~2台,轻型战斗机装1台,重型战斗机装2台。