氦氖激光波长是什么?
氦氖激光波长是632.8纳米(632.8nm)。氦氖激光的波长为632.8纳米(632.8nm),是可见的红色光,输出功率为10-40W。是以四能级方式工作的,产生激光的是氖原子,氦原子只是把它吸收的 能量共振转移给氖原子,起很好的媒介作用。氦氖激光是1961年成功运转的第一台气体 激光器。是以四能级方式工作的,产生激光的是氖原子,氦 原子只是把它吸收的 能量共振转移给氖原子,起很好的媒介作用。当氦氖原子气体在放电管中时,通过 电子碰撞的激发,氦原子由基态跃迁到亚稳态能级,处于这一能级的原子与氖原子碰撞时,将 能量传递给氖原子,使其向不同的能态跃迁,从而产生632.8nm、1152nm、3391nm等不同 波长的激光。氦氖激光的应用氦氖激光器由激光放电管、谐震腔和激励电源三组成,在医疗上氦氖激光主要用于照射,有刺激、消炎、镇痛和扩张血管作用。如内科可用于穴位照射、体表局部照射。皮肤科用于治疗皮肤、粘膜溃疡等。氦氖激光照射有改善皮肤微循环,加强新陈代谢,促进组织愈合和毛发生长的作用。常用来治疗因各种原因引起的无菌性皮肤溃疡、斑秃、单纯疱疹及带状疱疹等疾病。
氦氖激光器波长是多少?
氦氖激光器波长是632.8nm。一般来说氦氖激光器发出红色的光线,波长为632.8nm,这是由于这个波长在模式竞争中最有优势,但是也有些特殊的氦氖激光器。氦氖激光器原理:氦氖器工作原理是氖原子,不同能级的受射跃迁生不同波长的激光,主要有632.8nm、1.15um和3.39um三个波长原子有两个亚稳态能级21S0、23S1,它们的寿命分别为5×10-6s和10-4s,在气体放电管中,在电场中加速获得一定动能的电子与氦原子碰撞,并将氦原子激发到21S0、23S1。
氦氖激光器工作原理
氦氖激光器工作原理是氖原子,不同能级的受激辐射跃迁将产生不同波长的激光,主要有632.8nm、1.15um和3.39um三个波长。氦原子有两个亚稳态能级21S0、23S1,它们的寿命分别为5×10-6s和10-4s,在气体放电管中,在电场中加速获得一定动能的电子与氦原子碰撞,并将氦原子激发到21S0、23S1,此两能级寿命长容易积累粒子。原子能量的增加(或减少),不是爬坡式的渐变,而是阶梯式的跃变。即由一个能态跳到另一能态,稍事停留,再进一步跃迁。这些“阶梯”,在一定条件下,能量值是固定的,称为能级。原子在特定的两能级间跃迁,辐射的光子频率是固定的。如氖原子从2S能级跃迁到2P能级时,会辐射波长1.15微米的光波(2S、2P为能级符号,不代表能量值)。纯氖气的这种自发辐射效率极低。因为每个原子所受的碰撞不同,会跃迁到许多不同的能级,2S能级只是其中之一,只有少数原子处于这一状态。其它能级的原子向基态跃迁时,幅射的大都是红外光波。扩展资料氦氖(He-Ne)激光器的结构一般由放电管和光学谐振腔所组成。激光管的中心是一根毛细玻璃管,称作放电管(直径为1mm左右);外套为储气部分(直径约45mm);A是钨棒,作为阳极;K是钼或铝制成的圆筒,作为阴极。壳的两端贴有两块与放电管垂直并相互平行的反射镜,构成平凹谐振腔。两个镜版都镀以多层介质膜,一个是全反射镜,通常镀17层膜。交替地真空蒸氟化镁(MgF2与硫化锌(ZnS)。另一镜作为输出镜,通常镀7层或9层膜(由最佳透过率决定)。氦氖激光器已经被人们应用得非常普遍。但氦氖激光器又存在一定的缺点,激光器的效率较低,功率也不够大。所以在激光外科手术、钻孔、切割、焊接等这些行业中,人们现在大多换成采用 CO2激光器、脉冲激光器或者是半导体激光器等大功率激光器。因为氦氖激光器具有工作性质稳定、使用寿命比较长的特点,因而现在对于氦氖激光器在流速和流量测量方面得到了更加普遍的开发和利用,同时在精密计量方面的应用也非常广泛。参考资料来源:百度百科-氦氖激光器
氦氖激光器激发机理
1.氦氖激光器的结构
氦氖(He-Ne)激光器的结构一般由放电管和光学谐振腔所组成。激光管的中心是一根毛细玻璃管,称作放电管(直径为1mm左右);外套为储气部分(直径约45mm);A是钨棒,作为阳极;K是钼或铝制成的圆筒,作为阴极。壳的两端贴有两块与放电管垂直并相互平行的反射镜,构成平凹谐振腔。两个镜版都镀以多层介质膜,一个是全反射镜,通常镀17层膜。交替地真空蒸氟化镁(MgF2与硫化锌(ZnS)。另一镜作为输出镜,通常镀7层或9层膜(由最佳透过率决定)。毛细管内充入总气压约为2Torr(托)的He、Ne混合气体,其混合气压比为5:1-7:1左右。内腔管结构紧凑,使用方便,所以应用比较广泛。但有时为了特殊的需要也常选用全外腔式或半外腔式。
全外腔式的放电管和镜片是完全分离的,半外腔式是上两种形式的结合。
外腔式和半外腔式都需要粘贴布儒斯特片,窗片法线与激光光轴有一夹角,应等于布儒斯特角θ:
θ=tg-1n
K8玻璃对632.8nm激光
n=1.5159;θ=56°35';熔融石英
n=1.46;θ=55°36'。
因此,全外腔式和半外腔式激光器输出的光束是电矢量平行于入射面的线偏振光。
2.氦氖激光器激发机理
氦氖激光器中工作物质是氦气和氖气,其中氦气为辅助气体,氖气为工作气体。产生激光的是氖原子,不同能级的受激辐射跃迁将产生不同波长的激光,主要有632.8nm、1.15um和3.39um三个波长。
氦原子有两个亚稳态能级21S0、23S1,它们的寿命分别为5×10-6s和10-4s,在气体放电管中,在电场中加速获得一定动能的电子与氦原子碰撞,并将氦原子激发到21S0、23S1,此两能级寿命长容易积累粒子。因而,在放电管中这两个能级上的氦原子数是比较多的。这些氦原子的能量又分别与处于3S和2S态的氖原子的能量相近。处于21S0、23S1能级的氦原子与基态氖原子碰撞后,很容易将能量传递给氖原子,使它们从基态跃迁到3S和2S态,这一过程称能量共振转移。由于氖原子的2P、3P态能级寿命较短,这样氖原子在能级3S-3P、3S-2P、2S-2P间形成粒子数反转分布,从而发射出3.39um、632.8nm、1.5um三种波长的激光。
上述过程可表示为:
e**+He(11S0)→e*+He*(21S0)
e**+He(11S0)→e*+He*(23S0)
He*(21S0)+Ne(2P6)→He(21S0)+Ne*(3S)
He*(23S1)+Ne(2P6)→He(21S0)+Ne*(2S)
Ne*(3S)→Ne*(2P)产生波长为632.8nm的激光
Ne*(3S)→Ne*(3P)产生波长为3.39um的激光
Ne*(2S)→Ne*(2P)产生波长为1.15um的激光
从理论上讲,这三种波长的激光都有可能发射,但我们可以采取一些方法去抑制其中的两种,而使我们所需要的一种波长的激光得到输出。632.8nm(红光)因输出为可见波段的激光,实际应用较广泛。
氦氖激光器工作原理是什么?
氦氖激光器工作原理是氖原子,不同能级的受激辐射跃迁将产生不同波长的激光,主要有632.8nm、1.15um和3.39um三个波长。氦原子有两个亚稳态能级21S0、23S1,它们的寿命分别为5×10-6s和10-4s,在气体放电管中,在电场中加速获得一定动能的电子与氦原子碰撞,并将氦原子激发到21S0、23S1,此两能级寿命长容易积累粒子。原子能量的增加(或减少),不是爬坡式的渐变,而是阶梯式的跃变。即由一个能态跳到另一能态,稍事停留,再进一步跃迁。这些“阶梯”,在一定条件下,能量值是固定的,称为能级。原子在特定的两能级间跃迁,辐射的光子频率是固定的。如氖原子从2S能级跃迁到2P能级时,会辐射波长1.15微米的光波(2S、2P为能级符号,不代表能量值)。纯氖气的这种自发辐射效率极低。因为每个原子所受的碰撞不同,会跃迁到许多不同的能级,2S能级只是其中之一,只有少数原子处于这一状态。其它能级的原子向基态跃迁时,幅射的大都是红外光波。扩展资料氦氖(He-Ne)激光器的结构一般由放电管和光学谐振腔所组成。激光管的中心是一根毛细玻璃管,称作放电管(直径为1mm左右);外套为储气部分(直径约45mm);A是钨棒,作为阳极;K是钼或铝制成的圆筒,作为阴极。壳的两端贴有两块与放电管垂直并相互平行的反射镜,构成平凹谐振腔。两个镜版都镀以多层介质膜,一个是全反射镜,通常镀17层膜。交替地真空蒸氟化镁(MgF2与硫化锌(ZnS)。另一镜作为输出镜,通常镀7层或9层膜(由最佳透过率决定)。氦氖激光器已经被人们应用得非常普遍。但氦氖激光器又存在一定的缺点,激光器的效率较低,功率也不够大。所以在激光外科手术、钻孔、切割、焊接等这些行业中,人们现在大多换成采用 CO2激光器、脉冲激光器或者是半导体激光器等大功率激光器。因为氦氖激光器具有工作性质稳定、使用寿命比较长的特点,因而现在对于氦氖激光器在流速和流量测量方面得到了更加普遍的开发和利用,同时在精密计量方面的应用也非常广泛。参考资料来源:百度百科-氦氖激光器
氦氖激光器工作原理
氦氖激光器工作原理是氖原子,不同能级的受激辐射跃迁将产生不同波长的激光,主要有632.8nm、1.15um和3.39um三个波长。氦原子有两个亚稳态能级21S0、23S1,它们的寿命分别为5×10-6s和10-4s,在气体放电管中,在电场中加速获得一定动能的电子与氦原子碰撞,并将氦原子激发到21S0、23S1,此两能级寿命长容易积累粒子。原子能量的增加(或减少),不是爬坡式的渐变,而是阶梯式的跃变。即由一个能态跳到另一能态,稍事停留,再进一步跃迁。这些“阶梯”,在一定条件下,能量值是固定的,称为能级。原子在特定的两能级间跃迁,辐射的光子频率是固定的。如氖原子从2S能级跃迁到2P能级时,会辐射波长1.15微米的光波(2S、2P为能级符号,不代表能量值)。纯氖气的这种自发辐射效率极低。因为每个原子所受的碰撞不同,会跃迁到许多不同的能级,2S能级只是其中之一,只有少数原子处于这一状态。其它能级的原子向基态跃迁时,幅射的大都是红外光波。扩展资料氦氖(He-Ne)激光器的结构一般由放电管和光学谐振腔所组成。激光管的中心是一根毛细玻璃管,称作放电管(直径为1mm左右);外套为储气部分(直径约45mm);A是钨棒,作为阳极;K是钼或铝制成的圆筒,作为阴极。壳的两端贴有两块与放电管垂直并相互平行的反射镜,构成平凹谐振腔。两个镜版都镀以多层介质膜,一个是全反射镜,通常镀17层膜。交替地真空蒸氟化镁(MgF2与硫化锌(ZnS)。另一镜作为输出镜,通常镀7层或9层膜(由最佳透过率决定)。氦氖激光器已经被人们应用得非常普遍。但氦氖激光器又存在一定的缺点,激光器的效率较低,功率也不够大。所以在激光外科手术、钻孔、切割、焊接等这些行业中,人们现在大多换成采用CO2激光器、脉冲激光器或者是半导体激光器等大功率激光器。因为氦氖激光器具有工作性质稳定、使用寿命比较长的特点,因而现在对于氦氖激光器在流速和流量测量方面得到了更加普遍的开发和利用,同时在精密计量方面的应用也非常广泛。参考资料来源:百度百科-氦氖激光器
什么叫氦氖激光器
氦氖激光器工作原理是氖原子,不同能级的受激辐射跃迁将产生不同波长的激光,主要有632.8nm、1.15um和3.39um三个波长。氦原子有两个亚稳态能级21S0、23S1,它们的寿命分别为5×10-6s和10-4s,在气体放电管中,在电场中加速获得一定动能的电子与氦原子碰撞,并将氦原子激发到21S0、23S1,此两能级寿命长容易积累粒子。原子能量的增加(或减少),不是爬坡式的渐变,而是阶梯式的跃变。即由一个能态跳到另一能态,稍事停留,再进一步跃迁。这些“阶梯”,在一定条件下,能量值是固定的,称为能级。原子在特定的两能级间跃迁,辐射的光子频率是固定的。如氖原子从2S能级跃迁到2P能级时,会辐射波长1.15微米的光波(2S、2P为能级符号,不代表能量值)。纯氖气的这种自发辐射效率极低。因为每个原子所受的碰撞不同,会跃迁到许多不同的能级,2S能级只是其中之一,只有少数原子处于这一状态。其它能级的原子向基态跃迁时,幅射的大都是红外光波。扩展资料氦氖(He-Ne)激光器的结构一般由放电管和光学谐振腔所组成。激光管的中心是一根毛细玻璃管,称作放电管(直径为1mm左右);外套为储气部分(直径约45mm);A是钨棒,作为阳极;K是钼或铝制成的圆筒,作为阴极。壳的两端贴有两块与放电管垂直并相互平行的反射镜,构成平凹谐振腔。两个镜版都镀以多层介质膜,一个是全反射镜,通常镀17层膜。交替地真空蒸氟化镁(MgF2与硫化锌(ZnS)。另一镜作为输出镜,通常镀7层或9层膜(由最佳透过率决定)。氦氖激光器已经被人们应用得非常普遍。但氦氖激光器又存在一定的缺点,激光器的效率较低,功率也不够大。所以在激光外科手术、钻孔、切割、焊接等这些行业中,人们现在大多换成采用 CO2激光器、脉冲激光器或者是半导体激光器等大功率激光器。因为氦氖激光器具有工作性质稳定、使用寿命比较长的特点,因而现在对于氦氖激光器在流速和流量测量方面得到了更加普遍的开发和利用,同时在精密计量方面的应用也非常广泛。参考资料来源:百度百科-氦氖激光器
氦氖激光波长是什么?
氦氖激光波长是:650纳米。氦氖激光是1961年成功运转的第一台气体激光器,可用于穴位照射、体表局部照射;皮肤科用于治疗皮肤、粘膜溃疡等。相关:氦氖激光是以四能级方式工作的,产生激光的是氖原子,氦原子只是把它吸收的能量共振转移给氖原子,起很好的媒介作用。当氦氖原子气体在放电管中时,通过电子碰撞的激发,氦原子由基态跃迁到亚稳态能级,处于这一能级的原子与氖原子碰撞时,将能量传递给氖原子,使其向不同的能态跃迁,从而产生632.8nm、1152nm、3391nm等不同波长的激光。
激光器的三个条件及其作用,激光器的基本结构?
1、激光工作物质。是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。2、激励抽运系统。是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。3、光学共振腔。通常是由具有一定几何形状和光学反射特性的两块反射镜按特定的方式组合而成。作用为:①提供光学反馈能力,使受激辐射光子在腔内多次往返以形成相干的持续振荡。②对腔内往返振荡光束的方向和频率进行限制,以保证输出激光具有一定的定向性和单色性。共振腔作用取决于组成腔的两个反射镜的几何形状(反射面曲率半径)和相对组合方式;给定的共振腔型(其对腔内不同行进方向和不同频率的光,具有不同的选择性损耗特性)。扩展资料根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体激光器(晶体和玻璃),这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。参考资料来源:百度百科-激光器
半导体激光器产生激光输出的基本条件是哪些
下面这些是引用百度百科的:
半导体复合发光达到受激发射(即产生激光)的必要条件是:①粒子数反转分布分别从P型侧和n型侧注入到有源区的载流子密度十分高时,占据导带电子态的电子数超过占据价带电子态的电子数,就形成了粒子数反转分布。②光的谐振腔在半导体激光器中,谐振腔由其两端的镜面组成,称为法布里一珀罗腔。③高增益用以补偿光损耗。谐振腔的光损耗主要是从反射面向外发射的损耗和介质的光吸收。
半导体激光器是依靠注入载流子工作的,发射激光必须具备三个基本条件:
(1)要产生足够的 粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数;
(2)有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;
(3)要满足一定的阀值条件,以使光子增益等于或大于光子的损耗。
半导体激光器工作原理是激励方式,利用半导体物质(即利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈,产生光的辐射放大,输出激光。
激光器主要由几部分组成?各自的用处是什么?
激光器一般由三个部分组成:1、工作物质:激光器的核心,只有能实现能级跃迁的物质才能作为激光器的工作物质。2、激励能源:它的作用是给工作物质以能量,将原子由低能级激发到高能级的外界能量。通常可以有光能源、热能源、电能源、化学能源等。3、光学共振腔:作用一是使工作物质的受激辐射连续进行;二是不断给光子加速;三是限制激光输出的方向。最简单的光学共振腔是由放置在氦氖激光器两端的两个相互平行的反射镜组成。当一些氖原子在实现了粒子数反转的两能级间发生跃迁,辐射出平行于激光器方向的光子时,这些光子将在两反射镜之间来回反射,于是就不断地引起受激辐射,很快地就产生出相当强的激光。
激光器主要有几部分组成?
激光器一般包括三个部分。 \x0d\x0a\x0d\x0a 1、激光工作介质 \x0d\x0a\x0d\x0a 激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转世非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外道远红外,非常广泛。 \x0d\x0a\x0d\x0a 2、激励源 \x0d\x0a\x0d\x0a 为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。\x0d\x0a \x0d\x0a 3、谐振腔 \x0d\x0a\x0d\x0a 有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块光大部分反射、少量透射出去,以使激光可透过这块镜子而射出。被反射回到工作介质的光,继续诱发新的受激辐射,光被放大。因此,光在谐振腔中来回振荡,造成连锁反应,雪崩似的获得放大,产生强烈的激光,从部分反射镜子一端输出。