数列的通项公式

时间:2024-06-16 14:51:15编辑:流行君

数列的通项公式?

把An除过去,An+1/An=n/(n+1) 然后用An-1替换An 依次到A2/A1=1/2然后左边城左边右边乘以右边,把相同项约去。由a(n+1)/an=n/(n+1)得:an/a(n-1)=(n-1)/na(n-1)/a(n-2)=(n-2)/(n-1)a3/a2=2/3a2/a1=1/2由上n-1个式累乘得an/a1=1/n,a1=2/3所以an=2/(3n)数列累乘法的意义是消掉中间项,即消掉a2,a3,a4```a(n-1),剩下an和a1。数列累加法 例3 已知a1=1, an+1=an+2n 求an 解:由递推公式知:a2-a1=2, a3-a2=22, a4-a3=23, …an-an-1=2n-1 将以上n-1个式子相加可得 an=a1+2+22+23+24+…+2n-1=1+2+22+23+…+2n-1=2n-1 注:对递推公式形如an+1=an+f(n)的数列均可用逐差累加法 求通项公式,特别的,当f(n)为常数时,数列即为等差数列。

数列的通项公式

数列的通项公式如下:数列的通项公式: Sn=A1+A2+a3......+An,按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。正如函数的解析式一样,通过代入具体的n值便可求知相应an项的值。而数列迪项公式的水法,通常是由其递推公式经过若干变换得到。对于一个数列{an},如果仕意相邻网贝之左为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。数列:数列(sequence of number)是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项,通常用an表示。传说古希腊(约公元前570至约公元前500年)毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数。比如,他们研究过1,3,6,10。由于这些数可以用如右图所示的三角形点阵表示,他们就将其称为三角形数。类似地,1,4,9,16...,被称为正方形数,因为这些数能够表示成正方形。

常见8个数列的通项公式是什么?


常见8个数列的通项公式:1)An=A1+(n-1)d=Am+(n-m)d 。Sn=n(A1+An)/2=nA1+n(n-1)d/2 。2)An=Sn-S(n-1),2An=A(n-1)+A(n+1)=A(n-k)+A(n+k) 。3)若a+b=c+d,则Aa+Ab=Ac+Ad 。4)形如Sn=an^2+bn+c(ab≠0),当且仅当c=0时,An为等差数列.即当An为等差数,Sn是不含常数项的关于n的二次函数。5)形如aAn=bA(n-1)+c(a≠b)的数列,总可以化为等比数列,即令ax=bx+c,即x=c/(a-b),即An-c/(a-b)=a[A(n-1)-c/(a-b)] 。所以Bn=An-b/(1-a)为等比数列 。6)形如aAn+bA(n-1)+cA(n-2)=0(abc≠0)的数列,总可以化为等比数列,即令ax^2+bx+c=0的根为x1,x2,则 An-x1A(n-1)=x2[A(n-1)-x1A(n-2)] 。An-x2A(n-1)=x1[A(n-1)-x2A(n-2)] 。令B(n-1)=An-x1A(n-1).(1) 。B(n-1)'=An-x2A(n-1).(2) 。则Bn,Bn'为等比数列,从而可以求出Bn,Bn'.再解(1)(2)方程组可求出An。7)若An>0,形如An^a=cA(n-1)^b的数列可化为5)的形式,即两边取对数即:algAn=blgA(n-1)+lgc,令Bn=lgAn,即aBn=bB(n-1)+c。8)等差数列:Sn=a1n+n(n-1)d/2 ;等比数列:1:q=1时;Sn=na1 。

如何求数列的通项公式?

公式:q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)。q=1时,Sn=na1。(a1为首项,an为第n项,q为等比)。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。特殊性质:①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq。②在等比数列中,依次每k项之和仍成等比数列;等比数列的特殊性质。③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2。④ 若G是a、b的等比中项,则G^2=ab(G ≠ 0)。⑤在等比数列中,首项a1与公比q都不为零。注意:上述公式中an表示等比数列的第n项。

数列通项公式

按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an 项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。等差数列的通项:等比数列的通项:拓展:一阶数列概念:不妨将数列递推公式中同时含有an 和an+1的情况称为一阶数列;二阶数列概念:类比一阶递归数列概念,不妨定义同时含有an+2 、an+1、an的递推式为二阶数列。

数列通项公式


按一定次序排列的一列数称为数列,而将数列an的第n项用一个具体式子表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。数列通项公式的特点求数列通项公式的方法非常多,常见的有观察法,累加法,累乘法,待定系数法,倒数法,解方程法,阶差法和与通项的关系法等。除此之外我们还会遇到一些难度较大的方法,比如对数法特根法,不动点法奇偶分析法等等。数列递推关系式中满足后项与前项的差等于常数,则为等差数列,直接利用等差数列的通项公式求解,如果满足后项与前项的差等于一个函数,则考虑利用累加法进行求解。

求数列通项公式的方法

求数列通项公式的方法有:公式法 累加法 累乘法 待定系数法 对数变换法 迭代法 数学归纳法 换元法累乘法适用于an+1=anf(n)课本上在推导等比数列通项公式的时候采用的是累乘的方法,因此,这种方法也是求数列通项公式最基本的方法之一定义法适用于已知数列为等差或等比数列的题目。Sn法适用于已知数列前n项的和Sn=f(n)数学归纳法适用于易求出数列的前几项,并容易猜想出数列的通项的题目,然后用数学归纳法证明通项公式是成立的。

数列通项公式的十种求法

求数列通项公式的种方法分别是累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法、数学归纳法、不动点法、特征根法。按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。

怎么求数列的通项公式?

等差数列通项公式是an=a1+(n-1)*d。如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。通项公式推导:a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。在等差数列中:S = a,S = b (n>m),则S = (a-b)。记等差数列的前n项和为S。若a >0,公差d0,则当a ≤0且 +1≥0时,S 最小。若等差数列Sp=q,Sq=p,则Sp+q=-p-q,并且有ap=q,aq=p则ap+q=0。在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍。

通项公式


通项公式:按一定次序排列的一列数叫做数列,数列中的每一个数都叫做这个数的项,各项依次叫做第1项(或首项),第2项,一直到第n项。数列也可以看作是一个定义域为自然数集N(或它的有限子集{1,2,3,一直到n})的函数,当自变量从小到大依次取值时对应的一列函数值。性质:1、若已知一个数列的通项公式,那么只要依次用1、2、3去代替公式中的n,就可以求出这个数列的各项。2、不是任何一个无穷数列都有通项公式,如所有的质数组成的数列就没有通项公式。3、给出数列的前n项,通项公式不唯一。4、有的数列的通项可以用两个或两个以上的式子来表示。

什么是通项公式?

一、定义
如果数列{an}的第n项与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式   简单的说 就是一个数列的规律,有了通项公式就可以写出数列
二、特征
通项公式:如果一个数列的第n项an与其项数n之间的关系可用式子an=f(n)来表示,这个式子就称为该数列的通项公式.
1、通项公式通常不是唯一的,一般取其最简单的形式;   
2、通项公式以数列的项数n为唯一变量;   
3、并非每个数列都存在通项公式.   
4、应用于等差数列或应用于某一不规则数列可以肯定某部分为等差的等差部分.
三、原理
数列定义:
  按一定次序排成的一列数叫数列.其中,数列中的每一个数都叫做这个数列的项.
  数列的形式一般可表示为a1,a2,…,an,… (1、2、3、…、n为下标) 递推公式:   如果一个数列的第n项an与该数列的其他一项或多项之间存在对应关系的,这个关系就称为该数列的递推公式.例如斐波纳契数列的递推公式为an=an-1+an-2(n、n-1、n-2为下标).   通项公式是要用科学的计算方法来求证的,其中要用到各种公理,定理,及各种计算方法.   怎么由递推公式求通项公式关键是看递推公式的形式,不同的形式方法不同.
  如   an=a(n-1)+p或an=qa(n-a)   
这是最简单的等差型与等比型,这里就不赘述.  
 又如   an=p*a(n-1)+q,这种形式可以用不动点法  
 令an-d=p[a(n-1)-d]   
通过比较系数,可以把d用p与q表示出来(d=q/(1-p))  
 然后就化成了等比型,就可以求出an+d,进而求出an.  
 又如   an=p*a(n-1)+q*a(n-2)这样的形式  
 可以设   an-d*a(n-1)=p*[a(n-1)-d*a(n-2)]  
 仍然可以解出d,然后可以把an-d*a(n-1)求出,最后再求an.  
 还有an=[a*a(n-1)+b]/[c*a(n-1)+d],这是分式型.  
 这时要设   an-k=a*[a(n-1)-k]/[c*a(n-1)+d],然后通常可以解出两个k值(k1、k2)  
 然后再两式相比,得:
  (an-k1)/(an-k2)=[a(n-1)-k1][a(n-1)-k2],则可以求出(an-k1)/(an-k2),进而求出an
  总之,由递推公式求通项公式的类型相当多,每一种方法都不太一样,作此题时应该好好考虑考虑,确定一种最优解法.
四、应用
编程方面  
 s=s+n;累加器   
n=n+1;计数器  
 p=p*i;累乘器   
通常用在循环体内


上一篇:殷昭举

下一篇:吴师自通