对数螺线

时间:2024-06-12 16:14:16编辑:流行君

谁发明了对数螺旋线

早在2000多年以前,古希腊数学家阿基米德就对螺旋线进行了研究。公元1638年,著名数学家笛卡尔首先描述了对数螺旋线,并列出了螺旋线的解析式。这种螺旋线有很多特点,其中最突出的一点则是它的形状,无论你把它放大或缩小都不会改变。就像我们不能把角放大或缩小一样。

当我们观察着园蛛,尤其是丝光蛛和条纹蛛的网时,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;虽然辐的数目对不同的蜘蛛而言是各不相同的,可这个规律适用于各种蜘蛛。

我们已经知道,蜘蛛织网的方式很特别,它把网分成若干等份,同一类蜘蛛所分的份数是相同的。当它安置辐的时候,我们只见它向各个方向乱跳,似乎毫无规则,但是这种无规则的工作的结果是造成一个规则而美丽的网,像教堂中的玫瑰窗一般。即使他用了圆规、尺子之类的工具。没有一个设计家能画出一个比这更规范的网来。

我们可以看到,在同一个扇形里,所有的弦,也就是那构成螺旋形线圈的横辐,都是互相平行的,并且越靠近中心,这种弦之间的距离就越远。每一根弦和支持它的两根辐交成四个角,一边的两个是钝角,另一边的两个是锐角。而同一扇形中的弦和辐所交成的钝角和锐角正好各自相等——因为这些弦都是平行的。

不但如此,凭我们的观察,这些相等的锐角和钝角,又和别的扇形中的锐角和钝角分别相等,所以,总的看来,这螺旋形的线圈包括一组组的横档以及一组组和辐交成相等的角。

这种特性使我们想到数学家们所称的“对数螺线”。


对数螺线是什么

详见http://baike.baidu.com/view/795.htm

对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。   螺线特别是对数螺线的美学意义可以用指数的形式来表达:   ρ=αe^(kφ)   其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环小数。   对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。


什么是对数螺线?是谁发明的?

对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。螺线特别是对数螺线的美学意义可以用指数的形式来表达:φkρ=αe其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。 查看原帖>>


对数螺线是什么

对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极.据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中.  螺线特别是对数螺线的美学意义可以用指数的形式来表达:  ρ=αe^(kφ)   其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底.为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”.因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环小数.  对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式.


对数螺线怎么转换成参数方程


对数螺线的参数方程为:x=e^θcosθ。y=e^θsinθ。等角螺线,指的是臂的距离以几何级数递增的螺线。设 L 为穿过原点的任意直线,则 L 与等角螺线的相交的角A永远相等(故其名),而此值为 arccot(b)。简介等角螺线是由笛卡儿在1638年发现的。雅各布.伯努利后来重新研究之。他发现了等角螺线的许多特性,如等角螺线经过各种适当的变换之后仍是等角螺线。他十分惊叹和欣赏这曲线的特性,故要求死后将之刻在自己的墓碑上,并附词纵使改变,依然故我(eadem mutata resurgo)。可惜雕刻师误将阿基米德螺线刻了上去。

对数螺线方程如何解

填空:对数螺线ρ=e^θ在点处切线的直角坐标方程为________。
x+y=e^(π/2).
详解一,对数螺线方程ρ=e^θ在点θ=π/2处的切线直角坐标系方程见附图;
详解二:
对数螺线方程ρ=e^θ可化为隐函数方程:
ln√[x^2+y^2]=arctan(y/x),
利用隐函数求导法,求得在点[0,e^(π/2)]处的导数为y'(0)=-1,
故所求在点(ρ,θ)处的切线方程是:
y-e^(π/2)=-1(x-0)=-x,
即x+y=e^(π/2).


如何把对数螺线的极坐标形式转化为直角坐标形式

p=sqrt(x^2+y^2)
s=arctg(y/x)
所求方程为:
sqrt(x^2+y^2)=exp(arctg(y/x))

看你所给的答案其实是求参数方程,可以如下求解

在上述结果下,令sqrt(x^2+y^2)=exp(arctg(y/x))=t
于是得到:
x^2+y^2=t^2.............(1)
arctg(y/x)=ln(t).......(2)
由(2)得到:
y=x*tg(ln(t))...........(3)
带入(1)
化简得到:x=t*cos(lnt)..(4)
(4)带入(3):
y=t*sin(lnt)............(5)
这个结果也就可以了,注意到
y/x=tgS=tg(lnt)
所以S=lnt
t=exp(S)
分别带入上述结果,也就是你给出的答案,其实两者都一样

其中sqrt(x)表示x的算术平方根
exp(x)表示以e为底的x次方


对角螺线的弧长公式

对数螺线的弧长公式:r=e^θ,对数螺线指的是臂的距离以几何级数递增的螺线。
弧长元素=rdθ
则弧长=∫e^(aθ)*θdθ
=1/a∫θd[e^(aθ)]
=1/a*θ*e^(aθ)-1/a∫[e^(aθ)]dθ
=1/a*θ*e^(aθ)-1/a*1/a*e^(aθ)+C
0→φ为(φ/a-1/a^2)*e^(aφ)+1/a^2
弧长元素=rdθ
则弧长=∫e^(aθ)*θdθ
=1/a∫θd[e^(aθ)]
=1/a*θ*e^(aθ)-1/a∫[e^(aθ)]dθ
=1/a*θ*e^(aθ)-1/a*1/a*e^(aθ)+C
0→φ为(φ/a-1/a^2)*e^(aφ)+1/a^2
定理
设 C 为以原点为圆心的任意圆,则 C 与等角螺线的相交的角永远相等,而此值为,名为「倾斜度」。
等角螺线是自我相似的;这即是说,等角螺线经放大后可与原图完全相同。等角螺线的渐屈线和垂足线都是等角螺线。
从原点到等角螺线的任意点上的长度有限,但由该任意点出发沿等角螺线走到原点却需绕原点转无限次。这是由 Torricelli 发现的。(指数函数的取值范围为负无穷到正无穷,x轴是渐近线,因此极径r永远不会等于0,也即无法到达原点o)。


对数二极管是什么

用二极管或晶体管替换反相输入比例运算电路的反馈电阻,可构成对数运算电路。
互换对数运算电路中电阻和二极管或晶体管,可构成反对数运算电路。
这种电路输入信号只能是单极性,并且输出信号受温度影响较大,实际应用时需加温度补偿电路。
需要注意:对数和反对数运算电路输入输出呈非线性关系,但运放本身仍工作在线性区。


数学 理工学科 学习

用逆推法,先去分母,两边同乘4(1+x)(1+y)(1+z),又因为x+y+z=1得4+12xzy+8zy+8xz+8xy<=6+3zy+3xy+3zx+6zxy6zxy+5zy+5xz+5xy<=2又因为x,y,z是正数,x+y+z=1可知x,y,z都是小于1大于0的数故xzy,zy,xz,xy都是是百分位,十分位的小数,由此可知1<6zxy+5zy+5xz+5xy<=2满足条件,即成立。还有其它的方法,你也可以试着去推敲。


怎样学习理工学科?

许多同学由于没有正确掌握学习方法,有的虽然知道其重要性但不得学习要领,有的则误入题海,茫茫然不知所措,导致学绩不如人意。因此在学习数学的时候,我们有必要学会如何掌握知识,掌握技能,培养能力,以及锻炼成良好的学习心理品质,把握好关键学习阶段,最终掌握学习方法进而形成综合学习的能力。 学习中主要注意的一些问题: 1、在看书的时候正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。 由于理工科是一大类知识的连贯性和逻辑性都很强的学科,正确掌握我们学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要注意查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。只有基础扎实,我们成绩才会提高。 2、自我培养数学运算能力,养成良好的学习习惯。 每次考完试后,我们常会听到一些同学说:这次考试我又粗心了。而粗心最多的一种现象就是由于跳步骤产生的错误,并且屡错不改。这实际上是不良的学习习惯、求快心理造成的数学运算技能的不过关。要知道数学题的每一步都是运用一定的法则来完成的,如果在解题过程中忽视了某一步,那么就会发生这一步的法则没有正确的运用,进而产生错解。 因此,运算能力的提高从根本上说是要弄懂“算理”,不仅知道怎样算,而且知道为什么这样算,这就是我们常说的既要知其然又要知其所以然,从而把握运算的方向、途径和程序,一步一步仔细完成,使得运算能力一步一步地得到提高。同学们请注意,如果你有上述类似跳步的现象应及时改正,否则,久而久知,你会有一种恐惧心理,还没有开始解题就已经担心自己会做错,结果这样就会错得越多。 3、重视知识的获取过程,培养抽象、概括分析、综合、推理证明能力。 老师上课在讲解公式、定理、概念时,一般都揭示它们的形成过程,而这个过程却又是同学们最容易忽视的,有的同学认为:我只需听懂这个定理本身到时会用就行了,不需要知道他们是怎么得出的。这样的想法是不对的。因为老师在讲解知识的形成,发生的过程中,讲解的就是问题的一个思维过程,揭示的是问题解决的一种思想和方法,其中包含了抽象、概括分析、综合、推理等能力。如果我们不重视的话,实际就失去了一次从中吸取经验,锻炼和发展逻辑思维能力的机会。 4.把握好学期初始阶段的学习。 学习贵在持之以恒,锲而不舍的精神,但同时我们注意到新学期初的学习很重要,它起到一个承上启下的重要作用。假期已经结束,新学期开始了,同学们又要投入到了新的学习生活。时间不算短的假期,同学们一定感到轻松了很多。刚开学,大家可能感到还不那么紧张,然而我们的学习却更需要从学期初抓起,抓紧期初学习很重要。 学期之初,所学内容少,作业量小,同学们常有一种轻松之感。然而此时正是我们学习的好时机。一方面知识前后是有联系的,孔子曾说:“温故而知新”,我们可以利用这段时间将以前所学相关内容温习一下,以便于更好地学习新知识。另一方面,基础稍微差一点的同学,也可以利用这段时间弥补过去学习上的不足之处,这种弥补对新知识的学习也是较为有益的。 学期之初,我们所学内容尽管少,但要真正全部消化并不容易。那我们就必须花时间去巩固,直至把所学内容全部理解为止。如此看来,尽管是学期之初,我们仍然松懈不得。 有一个良好的开端才会有一个良好的结果。 学业成绩的提高,学习方法的掌握都和同学们良好的学习习惯分不开的,因此在最后我们再一起探讨一下良好的学习习惯。 良好的学习习惯包括:听讲、阅读、思考、作业。 听讲:应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。 阅读:阅读时应仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题应与同类参考书联系起来一同学习,博采众长,增长知识,发展思维。 思考:学会思考,在问题解决之后再探求一些新的方法,学着从不同角度去思考问题,甚至改变条件或结论去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维规律。 作业:要先复习后作业,先思考再动笔,做会一类题领会一大片,作业要认真、书写要规范,只有这样脚踏实地,一步一个脚印,才能学好数学。 总之,在学习的过程中,我们要认识到学习的重要性,充分发挥自己的主观能动性,从小的细节注意起,养成良好的学习习惯,以培养思考问题、分析问题和解决问题的能力。 !麻烦采纳,谢谢!


上一篇:霍比特人3 五军之战

下一篇:天地交征阴阳大悲赋