蛋白质组

时间:2024-05-30 05:22:21编辑:流行君

蛋白质组学简介

目录 1 拼音 2 英文参考 3 概念 4 基因组和蛋白质组的关系 1 拼音 dàn bái zhì zǔ xué 2 英文参考 Proteomics 3 概念 蛋白质组学是阐明生物体各种生物基因组在细胞中表达的全部蛋白质的表达模式及功能模式的学科;包括鉴定蛋白质的表达、存在方式(修饰形式)、结构、功能和相互作用等。 4 基因组和蛋白质组的关系 90年代初期开始实施的人类基因组计划,在经过各国科学家近10年的努力下,已经取得了巨大的成就。不仅完成了十余种模式生物(从大肠杆菌、酿酒酵母到线虫)基因组全序列的测定工作,还有望在2003年提前完成人类所有基因的全序列测定。那么,知道了人类的全部遗传密码即基因组序列,就可以任意控制人的生老病死吗?其实并不是这么简单。基因组学(genomics)虽然在基因活性和疾病的相关性方面为人类提供了有力根据,但实际上大部分疾病并不是因为基因改变所造成。并且,基因的表达方式错综复杂,同样的一个基因在不同条件、不同时期可能会起到完全不同的作用。关于这些方面的问题,基因组学是无法回答的。所以,随着人类基因组计划的逐步完成,科学家们又进一步提出了后基因组计划,蛋白质组(proteome)研究是其中一个很重要的内容。 那么,基因组和蛋白质组到底有什么联系?我们可以这样理解生命,遗传信息从DNA(基因)转变为一种被称作mRNA的中间转载体,然后再合成各式各样的结构蛋白质和功能蛋白质,构成一种有机体,完成生命的功能。基因→ mRNA→蛋白质,三位一体,构成了遗传信息的流程图,这即是传统的中心法则。现在已经证明,一个基因并不只存在一个相应的蛋白质,可能会有几个,甚至几十个。什么情况下会有什么样的蛋白,这不仅决定于基因,还与机体所处的周围环境以及机体本身的生理状态有关。并且,基因也不能直接决定一个功能蛋白。实际上,往往是通过基因的转录、表达产生一个蛋白质前体,在此基础上再进行加工、修饰,才成为一个具生物活性的蛋白质。这样的蛋白质还通过一系列的运输过程,到组织细胞内适当的位置才能发挥正常的生理作用。基因不能完全决定这样的蛋白质后期加工、修饰以及转运定位的全过程。而且,这些过程中的任何一个步骤发生微细的差错即可导致机体的疾病。纽约Rockefeller大学的细胞和分子生物学家Günter Blobel博士就是因其“蛋白质内在的信号分子活性,调节自身的细胞内转运和定位”研究上的卓越成就,获得了1999年诺贝尔医学奖和生理学奖。近些年来人们又发现蛋白质间亦存在类似于mRNA分子内的剪切、拼接,具有自身特有的活动规律。这种自主性不能从其基因编码序列中预测,而只能通过对其最终的功能蛋白进行分析。因此说,基因虽是遗传信息的源头,而功能性蛋白是基因功能的执行体。基因组计划的实现固然为生物有机体全体基因序列的确定、为未来生命科学研究奠定了坚实的基础,但是它并不能提供认识各种生命活动直接的分子基础,其间必须研究生命活动的执行体蛋白质这一重要环节。蛋白质组学(proteomics)研究即旨在解决这一问题。 蛋白质组(proteome)一词,源于蛋白质(protein)与 基因组(genome)两个词的杂合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。蛋白质组的研究不仅能为生命活动规律提供物质基础,也能为众多种疾病机理的阐明及攻克提供理论根据和解决途径。通过对正常个体及病理个体间的蛋白质组比较分析,我们可以找到某些“疾病特异性的蛋白质分子”,它们可成为新药物设计的分子靶点,或者也会为疾病的早期诊断提供分子标志。确实,那些世界范围内销路最好的药物本身是蛋白质或其作用靶点为某种蛋白质分子。因此,蛋白质组学研究不仅是探索生命奥秘的必须工作,也能为人类健康事业带来巨大的利益。

组蛋白简介

目录 1 拼音 2 英文参考 3 注解 1 拼音 zǔ dàn bái 2 英文参考 histone 3 注解 组蛋白(histone)指与有核细胞核内DNA结合的堿性蛋白,以与DNA结合成核酸组蛋白的形态,几乎存在于所有细胞核中。在 *** 核中,由于生物不同,有时以鱼精蛋白取代组蛋白。从氨基酸组成来看,多数是赖氨酸和精氨酸,芳香族氨基酸和含硫氨基酸较少。缔合作用强。一般认为由以下5种分子构成(因细胞核的种类不同,有时可更多些):F1或Ⅰ(高赖氨酸,丙氨酸型),F2b或Ⅱb2(高赖氨酸,丝氨酸型),F2a2或Ⅱb1(高丙氨酸,亮氨酸型,高精氨酸、赖氨酸型),F2a1或Ⅳ(高精氨酸甘氨酸型)F3或Ⅲ(高精氨酸,丙氨酸型)。小牛胸腺的组蛋白,其分子量分别为21,000,13,775,14,002,11,282,15,324。其中除F1以外,其它4种分子的化学结构已经确定,发现相同的堿性氨基酸残基和疏水性氨基酸残基在分子内分布相当靠近。即使生物的种类不同,但组蛋白的各分子种类的化学结构似乎是十分相似的。在染色质内,组蛋白和DNA的重量比约为1∶1,具有彼此相反的电荷,进行离子结合。组蛋白维持DNA的结构,起著稳定的所谓超螺旋型配置的作用。同时有的学说认为在细胞核中的组蛋白起著抑制DNA的遗传信息表达的作用。组蛋白分子中,特定的氨基酸残基部分地受到乙酰化、甲基化、磷酸酯化等作用,这种组蛋白的分子修饰似乎与调节细胞周期内遗传因子机能的表达有关。 组蛋白是真核生物染色体的基本结构蛋白, 是一类小分子堿性蛋白质, 有五种类型:H1 、H2A 、H2B 、H3 、H4,它们富含带正电荷的堿性氨基酸, 能够同DNA中带负电荷的磷酸基团相互作用。 组蛋白的基因非常保守。亲缘关系较远的种属中, 四种组蛋白(H2A、H2A、H3、H4)氨基酸序列都非常相似, 如海胆组织H3的氨基酸序列与来自小牛胸腺的H3的氨基酸序列间只有一个氨基酸的差异, 小牛胸腺的H3的氨基酸序列与豌豆的H3也只有4个氨基酸不同。不同生物的H1序列变化较大, 在某些组织中,H1被特殊的组蛋白所取代。如成熟的鱼类和鸟类的红细胞中H1 则被H5 所取代, 精细胞中则由精蛋白代替组蛋白。染色质中的组蛋白与DNA的含量之比为1:1。

蛋白质名词解释是什么?


蛋白质名词解释如下:蛋白质是由α-氨基酸结合而成的天然高分子化合物,相对分子质量为6×103~106,是主要的生命基础物质之一。蛋白质分子中氨基酸残基之间以肽键相连接,也可以说蛋白质是氨基酸为单体的高聚酰胺。蛋白质种类繁多,水解最终产物只有α-氨基酸的称为单纯蛋白质。单纯蛋白质与非蛋白质的结合物叫结合蛋白质,如脂蛋白、糖蛋白、血红蛋白等。单纯蛋白质分为不溶于水的纤维蛋白和可溶于水的球蛋白。蛋白质特性蛋白质分子受到某些物理因素(如加热、高压、超声波、紫外线、X射线、剧烈振荡等)和化学因素 (如强酸、强碱、重金属盐、有机溶剂、尿素等)的影响,二级、三级、四级结构发生变化,从而失去生物活性,并发生物理性质与化学性质的变化,叫作变性。如,鸡蛋白水溶液中加入硝酸铅、硫酸铜、硝酸汞等重金属盐溶液,立即出现沉淀。煮鸡蛋与高温杀菌消毒也是蛋白质变性的例子。变性有可逆变性和不可逆变性两种,尿素引起的变性是可逆变性,当除去变性因素后,蛋白质分子的高级结构可以恢复原状;加热、重金属盐引起的变性是不可逆变性,如煮熟的鸡蛋放冷后不可能再恢复原状。

优质蛋白质名词解释


优质蛋白质:食物蛋白质的氨基酸模式越接近人体蛋白质的氨基酸模式,则这种蛋白质越容易被人体吸收利用。评判蛋白质是否“优质”的标准取决于两个因素:1、这种蛋白质的氨基酸组成跟人体需要的组成有多接近;2、这种蛋白质被消化吸收的效率。基于这两点,食品学界设计了一个“消化校正氨基酸计分”,简称PDCAAS。经过实验测试和计算,每种蛋白质会得到一个分数,最低为0分,最高为1分。1分表示这种蛋白质消化吸收率很高、氨基酸组成跟人体很接近,所以只吃它就可以最高效地满足人体需求;0分则表示这种蛋白质缺乏某些人体必需的氨基酸,如果只吃它,吃多少都不能满足人体需求。扩展资料:通常食物中的蛋白质,比如牛奶蛋白质、大豆蛋白质、鸡蛋蛋白质、牛肉蛋白质等,其实是多种蛋白质的混合。所以,经过分离提纯的蛋白质,其氨基酸组成可能出现一定变化,从而改变PDCAAS。此外,加工方式可能影响消化吸收率,也可能对PDCAAS值有一定影响。比如大豆蛋白质,1分指的是经过纯化的分离大豆蛋白质。在大豆或者豆粕(粕读pò,豆粕是大豆提取豆油后得到的一种副产品)中,还有蛋白酶抑制剂以及一些低PDCAAS的蛋白质组分,其PDCAAS值约为0.91分,跟牛肉差不多。参考资料来源:人民网-蛋白质也分三六九等 哪些食物的蛋白质最优质?

论述蛋白质组学与基因组学的区别和联系

组学omics,研究的是整体. 按照分析目标不同主要分为基因组学,转录组学,蛋白质组学,代谢组学。
基因组学研究的主要是基因组DNA,使用方法目前以二代测序为主,将基因组拆成小片段后再用生物信息学算法进行迭代组装。当然这仅仅是第一步,随后还有繁琐的基因注释等数据分析工作。
转录组学研究的是某个时间点的mRNA总和,可以用芯片,也可以用测序。芯片是用已知的基因探针,测序则有可能发现新的mRNA,
蛋白组学针对的是全体蛋白,组要以2D-Gel和质谱为主,分为top-down和bottom-up分析方法。理念和基因组类似,将蛋白用特定的物料化学手段分解成小肽段,在通过质量反推蛋白序列,最后进行搜索,标识已知未知的蛋白序列。
代谢组分析的代谢产物,是大分子和小分子的混合物,主要也是用液相和质谱。
总而言之,这些技术都想从全局找变量,都是一种top-down的研究方法,原因很简单:避免‘只缘身在此山中’的尴尬。
但因为技术局限,都各有缺点,尤其是转录组和蛋白组数据,基本上颠覆了以前一直认为的mRNA水平能代表蛋白水平的观念,因为这两组数据的重合度太低。
所以目前很多研究都开始使用交叉验证方法。
无论如何,都需要对数据进行分析,有经验的分析往往能化腐朽为神奇。


什么是蛋白质组学的基本技术流程

  蛋白质组学的基本技术流程主要为以下四方面:

  蛋白质标本的制备及分离:寻找较好的方法尽可能完全地抽提细胞或组织中的全部蛋白质是比较蛋白质组学研究的重要前提。蛋白质图像的差异对比分析:给予双向电泳所获得的凝胶图谱,可用图像分析软件进行分析对比。差异蛋白质肽段鉴定:图像分析显示的不相匹配点及有异常变化匹配点是比较蛋白质组学的兴趣所在。单排之数据库的搜索分析:蛋白质数据库是属性化的数据库,通过搜索蛋白质数据库可分析和确定该蛋白质性质特征,若搜索不到,可能为新蛋白。


蛋白组学的研究方法

蛋白组学的研究方法如下:蛋白质组学的发展既是技术所推动的也是受技术限制的。蛋白质组学研究成功与否,很大程度上取决于其技术方法水平的高低。蛋白质研究技术远比基因技术复杂和困难。不仅氨基酸残基种类远多于核苷酸残基(20/4), 而且蛋白质有着复杂的翻译后修饰,如磷酸化和糖基化等,给分离和分析蛋白质带来很多困难。此外,通过表达载体进行蛋白质的体外扩增和纯化也并非易事,从而难以制备大量的蛋白质。蛋白质组学的兴起对技术有了新的需求和挑战。蛋白质组的研究实质上是在细胞水平上对蛋白质进行大规模的平行分离和分析,往往要同时处理成千上万种蛋白质。因此,发展高通量、高灵敏度、高准确性的研究技术平台是现在乃至相当一段时间内蛋白质组学研究中的主要任务。当前在国际蛋白质组研究技术平台的技术基础和发展趋势有以下几个方面: 蛋白质组数据库是蛋白质组研究水平的标志和基础。瑞士的SWISS-PROT拥有目前世界上最大,种类最多的蛋白质组数据库。丹麦、英国、美国等也都建立了各具特色的蛋白质组数据库。生物信息学的发展已给蛋白质组研究提供了更方便有效的计算机分析软件;特别值得注意的是蛋白质质谱鉴定软件和算法发展迅速,如SWISS-PROT、Rockefeller大学、BHS宝护神、UCSF等都有自主的搜索软件和数据管理系统。最近发展的质谱数据直接搜寻基因组数据库使得质谱数据可直接进行基因注释、判断复杂的拼接方式。随着基因组学的迅速推进,会给蛋白质组研究提供更多更全的数据库。另外,对肽序列标记的从头测序软件也十分引人注目。

蛋白质组学研究的主要步骤

蛋白质组学研究的主要步骤如下:1、蛋白质样品的制备:蛋白质样品的制备是蛋白质组学研究的首要环节,也是最为重要的部分。蛋白质样品的质量直接影响到科学研究的真实性和可信度。2、蛋白质的分离:双向凝胶电泳技术是目前最基础和常用的蛋白质分离方法,它能将数千种蛋白质同时分离与展示的分离技术。双向电泳分为等电聚焦电泳和SDS-PAGE两个步骤,即先进行等电聚焦电泳,按照pI的不同将蛋白分离,然后再进行SDS-PAGE 按照分子量的大小不同对蛋白进行分离。3、蛋白质双向电泳凝胶的染色。目前双向电泳凝胶的染色的方法有3种,分别为考马斯亮蓝染色法、银染法和荧光染色法。考马斯亮蓝染色法,操作简便,无毒性,染色后的背景及对比度良好。4、双向电泳凝胶图像的采集与分析:图像采集系统通过投射扫描根据吸光度的大小获碍蛋白质点的光密度信息。一般来说,该光密度值与蛋白质点的表达丰度成正比,以便于软件分析时的定量比较。完成图像采集后采用Image Master等图像分析软件进行分析。蛋白质的用处:1、蛋白质是建造和修复身体的重要原料,人体的发育以及受损细胞的修复和更新,都离不开蛋白质。2、蛋白质也能被分解为人体的生命活动提供能量。

蛋白质组学的研究方法

蛋白质组学的研究方法有蛋白质鉴定、翻译后修饰、蛋白质功能确定、蛋白质靶向定量技术。1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合Western等技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究。2.翻译后修饰:很多mRNA表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原激活等。翻译后修饰是蛋白质调节功能的重要方式,因此对蛋白质翻译后修饰的研究对阐明蛋白质的功能具有重要作用。3.蛋白质功能确定:如分析酶活性和确定酶底物,细胞因子的生物分析/配基-受体结合分析。可以利用基因敲除和反义技术分析基因表达产物-蛋白质的功能。另外对蛋白质表达出来后在细胞内的定位研究也在一定程度上有助于蛋白质功能的了解。Clontech的荧光蛋白表达系统就是研究蛋白质在细胞内定位的一个很好的工具。4.对人类而言,蛋白质组学的研究最终要服务于人类的健康,主要指促进分子医学的发展。如寻找药物的靶分子。很多药物本身就是蛋白质,而很多药物的靶分子也是蛋白质。药物也可以干预蛋白质-蛋白质相互作用。

蛋白质结构与功能的研究进展?

如果在五年前提到蛋白质组学(Proteomics),恐怕知之者甚少,而在略知一二者中,部分人还抱有怀疑态度。但是,2001年的Science杂志已把蛋白质组学列为六大研究热点之一,其“热度”仅次于干细胞研究,名列第二。蛋白质组学的受关注程度如今已令人刮目相看。
1.蛋白质组学研究的研究意义和背景
随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial
analysis
of
gene
expression,
SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA
mRNA
蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional
control
),翻译水平调控(Translational
control),翻译后水平调控(Post-translational
control
)。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。
传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1)
生命现象的发生往往是多因素影响的,必然涉及到多个蛋白质。(2)
多个蛋白质的参与是交织成网络的,或平行发生,或呈级联因果。(3)
在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究。因此在上世纪90年代中期,国际上产生了一门新兴学科-蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。
虽然第一次提出蛋白质组概念是在1994年,但相关研究可以追溯到上世纪90年代中期甚至更早,尤其是80年代初,在基因


蛋白质组学的研究内容

1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合Western等技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究。2.翻译后修饰:很多mRNA表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原激活等。翻译后修饰是蛋白质调节功能的重要方式,因此对蛋白质翻译后修饰的研究对阐明蛋白质的功能具有重要作用。3.蛋白质功能确定:如分析酶活性和确定酶底物,细胞因子的生物分析/配基-受体结合分析。可以利用基因敲除和反义技术分析基因表达产物-蛋白质的功能。另外对蛋白质表达出来后在细胞内的定位研究也在一定程度上有助于蛋白质功能的了解。Clontech的荧光蛋白表达系统就是研究蛋白质在细胞内定位的一个很好的工具。4.对人类而言,蛋白质组学的研究最终要服务于人类的健康,主要指促进分子医学的发展。如寻找药物的靶分子。很多药物本身就是蛋白质,而很多药物的靶分子也是蛋白质。药物也可以干预蛋白质-蛋白质相互作用。在基础医学和疾病机理研究中,了解人不同发育、生长期和不同生理、病理条件下及不同细胞类型的基因表达的特点具有特别重要的意义。这些研究可能找到直接与特定生理或病理状态相关的分子,进一步为设计作用于特定靶分子的药物奠定基础。 不同发育、生长期和不同生理、病理条件下不同的细胞类型的基因表达是不一致的,因此对蛋白质表达的研究应该精确到细胞甚至亚细胞水平。可以利用免疫组织化学技术达到这个目的,但该技术的致命缺点是通量低。激光捕获显微切割LCM(Laser Capture Microdissection)技术可以精确地从组织切片中取出研究者感兴趣的细胞类型,因此LCM技术实际上是一种原位技术。取出的细胞用于蛋白质样品的制备,结合抗体芯片或二维电泳-质谱的技术路线,可以对蛋白质的表达进行原位的高通量的研究。很多研究采用匀浆组织制备蛋白质样品的技术路线,其研究结论值得怀疑,因为组织匀浆后不同细胞类型的蛋白质混杂在一起,最后得到的研究数据根本无法解释蛋白质在每类细胞中的表达情况。虽然培养细胞可以得到单一类型细胞,但体外培养的细胞很难模拟体内细胞的环境,因此这样研究得出的结论也很难用于解释在体实际情况。因此在研究中首先应该将不同细胞类型分离,分离出来的不同类型细胞可以用于基因表达研究,包括mRNA和蛋白质的表达。LCM技术获得的细胞可以用于蛋白质样品的制备。可以根据需要制备总蛋白,或膜蛋白,或核蛋白等,也可以富集糖蛋白,或通过去除白蛋白来减少蛋白质类型的复杂程度。相关试剂盒均有厂商提供。 蛋白质样品中的不同类型的蛋白质可以通过二维电泳进行分离。二维电泳可以将不同种类的蛋白质按照等电点和分子量差异进行高分辨率的分离。成功的二维电泳可以将2000到3000种蛋白质进行分离。电泳后对胶进行高灵敏度的染色如银染和荧光染色。如果是比较两种样品之间蛋白质表达的异同,可以在同样条件下分别制备二者的蛋白质样品,然后在同样条件下进行二维电泳,染色后比较两块胶。也可以将二者的蛋白质样品分别用不同的荧光染料标记,然后两种蛋白质样品在一块胶上进行二维电泳的分离,最后通过荧光扫描技术分析结果。胶染色后可以利用凝胶图像分析系统成像,然后通过分析软件对蛋白质点进行定量分析,并且对感兴趣的蛋白质点进行定位。通过专门的蛋白质点切割系统,可以将蛋白质点所在的胶区域进行精确切割。接着对胶中蛋白质进行酶切消化,酶切后的消化物经脱盐/浓缩处理后就可以通过点样系统将蛋白质点样到特定的材料的表面(MALDI-TOF)。最后这些蛋白质就可以在质谱系统中进行分析,从而得到蛋白质的定性数据;这些数据可以用于构建数据库或和已有的数据库进行比较分析。LCM-二维电泳-质谱的技术路线是典型的一条蛋白质组学研究的技术路线,除此以外,LCM-抗体芯片也是一条重要的蛋白质组学研究的技术路线。即通过LCM技术获得感兴趣的细胞类型,制备细胞蛋白质样品,蛋白质经荧光染料标记后和抗体芯片杂交,从而可以比较两种样品蛋白质表达的异同。Clontech最近开发了一张抗体芯片,可以对378种膜蛋白和胞浆蛋白进行分析。该芯片同时配合了抗体芯片的全部操作过程的重要试剂,包括蛋白质制备试剂,蛋白质的荧光染料标记试剂,标记体系的纯化试剂,杂交试剂等。对于蛋白质相互作用的研究,酵母双杂交和噬菌体展示技术无疑是很好的研究方法。Clontech开发的酵母双杂交系统和NEB公司开发的噬菌体展示技术可供研究者选用。关于蛋白质组的研究,也可以将蛋白质组的部分或全部种类的蛋白质制作成蛋白质芯片,这样的蛋白质芯片可以用于蛋白质相互作用研究,蛋白表达研究和小分子蛋白结合研究。 Science,Vol. 293,Issue 5537,2101-2105,September 14,2001发表了一篇关于酵母蛋白质组芯片的论文。该文主要研究内容为:将酵母的5800个ORF表达成蛋白质并进行纯化点样制作芯片,然后用该芯片筛选钙调素和磷脂分子的相互作用分子。最后有必要指出的是,传统的蛋白质研究注重研究单一蛋白质,而蛋白质组学注重研究参与特定生理或病理状态的所有的蛋白质种类及其与周围环境(分子)的关系。因此蛋白质组学的研究通常是高通量的。适应这个要求,蛋白质组学相关研究工具通常都是高度自动化的系统,通量高而速度快,配合相应分析软件和数据库,研究者可以在最短的时间内处理最多的数据

2019-11-12 听课笔记之蛋白质组学研究方法概述(上)

写在前面 从10月底开始,由克里克学院与康昱盛主办的蛋白质组学网络大课堂正式开班了,整个课程由21堂大课组成。作为蛋白质组学纯小白一枚,我也打算借这个机会好好学习感受一下。以下是我整理的第一讲“蛋白质组学研究方法概述”的听课笔记,分享给各位也想入入门的小伙伴们~ 授课老师 这次课程的授课老师完全可以用青年才俊四个字来形容:她于2014年博士毕业于德国慕尼黑工业大学(Technische Universit?t München)生物分析与蛋白质组学研究所,师从领域的大牛Prof. Bernhard Kuster。主攻方向是基于串联质谱的蛋白质组学在肿瘤药物研究中的应用。她就是目前任职于上海交通大学系统生物医学研究院的助理研究员库鑫博士(此处应该有掌声)!库博士目前的研究方向是肿瘤相关生物标志物的发现和蛋白质糖基化修饰。 (文中所有图片均来自库鑫博士的讲义,并获得发表授权。) 基于质谱的蛋白质组学 大伙儿都知道,蛋白质组学(proteomics),是研究一种细胞或者一种生物体所表达的全部蛋白质。虽说现在基因组测序火得一塌糊涂,但是,我们不要忽略了,蛋白质才是执行生命体功能的基本单元,而且蛋白质都是通过形成各种复合物,组成通路网络,去行使各种生物学功能的!所以,有很多生物学问题只能在蛋白质层面上去研究去探索,而且需要站在系统的层面去考察,比如说:蛋白-蛋白相互作用、蛋白的细胞定位、翻译后修饰、信号通路及代谢通路的调控和功能等。这就是为啥蛋白质组学如此重要啦! 既然重要,科学家们自然是想尽办法来研究了!最开始使用的技术就是传说中的双向凝胶电泳(2-DE),由于分辨率低、蛋白质重叠等各种问题,无论是通量还是准确度,都不尽如人意。当质谱技术兴起以后,就迅速被替代了。 说起质谱技术的诞生,估计很多小伙伴都听过那个著名的diao丝逆袭的段子,讲的就是2002年诺贝尔化学奖得主田中耕一,作为蛋白质谱发明人之一,由于一个不小心在实验时错加了甘油,结果神奇地将质谱技术引入到鉴定生物大分子的应用领域。想想,大到整个人类的科技发展史,小到每个个体的人生,都充满了多少不可思议的奇迹~ 当质谱技术与蛋白质组学碰到了一起,真是天雷引了地火,产生出强烈的化学反应,迅速引爆整个学科的发展!也就十几年的时间吧,蛋白质组学的研究目标从细胞模型、动物模型,到人的体液、组织等人体样本,应用范围的生物复杂度越来越高。研究目的呢,也从最初的肽段序列推导,到多肽和蛋白质的定性定量分析,翻译后修饰,再到如今成为新热点的靶向蛋白质组学,总之,势不可挡啊! 基于质谱的蛋白质组学概览 说到靶向蛋白质组学,咱们都知道,一直以来蛋白质组学的应用领域主要是针对基础生物学,比如研究通路、蛋白复合物、互作网络,表征细胞和组织的类型,观察细胞周期内蛋白质的表达等。近年来,由于技术的飞速发展,蛋白质组学开始被用于医学研究和药物研究。比如说药物研究,国内可能用得还不多,但在欧美已经开始越来越广泛。以肝毒性为例,蛋白质组学可以为药物研发前期的肝毒性评估提供研究手段。 蛋白质组学在药物发现中的应用实例 那么,怎么将蛋白质组学应用到临床及药物研发中呢?就是需要靶向蛋白质组学技术了!以前,蛋白质组学技术主要用于发现新的未知物,比如肽段、蛋白复合物、蛋白的翻译后修饰等。这部分的应用很广,技术门槛比较低,方法比较通用。但问题是,这种方法思路没办法应对大量的临床样本,可重复性和准确性达不到要求。 于是,靶向分析开始兴起,就是说,分析之前我们就明确知道需要分析的物质是什么,然后把它挑出来,进行一个精确的定量和分析!我们不需要一次性验证成千上万的蛋白,但我们需要在成百上午的样本中验证十几种或者几十种我们关心的蛋白质,而且这些蛋白质常常都是浓度很低的蛋白,用传统的方法基本上只有被遗漏的命(后面我会详细讲为什么会遗漏)。有了靶向技术,对于研究临床诊断的生物标志物,就有了更大的可能和更强的支撑了! 那么接下来,根据老师讲课的思路,我就从定性检测、定量检测和靶向蛋白质组学三个方面来分享下听课的收获。 定性检测 无论是定性还是定量检测,样品制备是跑不掉的准备工作。用于质谱的蛋白质样品,来源非常广泛,只要你是包含了蛋白质的东西,都可以作为来源。对于复杂的样品,比如人体体液或组织样本,蛋白质的提取及去高峰度,常常需要复杂的精细的处理,而且处理流程根据样本和研究目的的不同而不同。这部分内容呢,第二讲“样品前处理”会详扒,感兴趣的小伙伴可以期待我的下一篇听课笔记吧~ 话说,蛋白质的定性检测有两种思路:Bottom-up和Top down。Top down是指从一个完整的蛋白出发,在质谱中进行碎片化处理,通过对碎片分子的检测,推导出蛋白的序列。而在使用中真正占绝大多数是Bottom-up方法,也就是我们常说的shotgun方法,它充分利用了蛋白质自身的特点:可以被特定的酶在特定的位点切断。基本思路是,先用蛋白酶把蛋白序列进行酶切,再针对酶切后的肽段进行鉴定,所以进入质谱的检测对象永远是肽段,再根据肽段序列再推导出蛋白序列。 基于质谱的蛋白质研究常用方法 接下来我们就详细说说Bottom-up/shotgun方法,是怎么样用质谱对蛋白质进行定性检测的。这事儿分三步走不完,得分七步走: 1. 样本处理:拿到蛋白来源的各种样本,进行前处理和优化。 2. 蛋白分离:根据研究需要,用凝胶分离,提取所需的蛋白,或者不分离,全部拿来检测,需要注意去杂质; 3. 酶切:用序列特异性的酶,对蛋白进行酶切; 4. 肽段分离:酶切后的肽段进入HPLC(高压液相色谱),这也就是我们常说的LC-MS中的LC,肽段会因为在色谱柱填料上的保留时间的不同,得到预分离; 5. 电离:分离后的肽段,加电压使其离子化(ESI);或者用MALDI基质辅助的激光解离,就不需要HPLC的过程; 6. 质谱解析:将带上电荷的肽段送入质谱,肽段会在磁场中发生偏转(质谱仪的基本原理),在质谱里收集信号,得到谱图。 7. 搜库:用搜索软件对质谱图进行自动化的分析,得到肽段及蛋白序列信息。 shotgun一般流程 Tips: 质谱种类很多,比如四级杆质谱、飞行时间质谱、四级杆离子阱、傅里叶变换质谱等。更多详情会在第三讲“蛋白质谱原理,使用与维护”中介绍。 换个角度,对Shotgun方法的流程,我们可以这样来总结: --数据产生:蛋白?肽段?谱图 --数据分析:谱图?肽段?蛋白 这里面最关键的一个指标,我们叫Peptide-Spectrum matching(PSM),就是指谱图与肽段的匹配。匹配得越好,则反推出的蛋白就越准确。这个匹配的过程,也就是我们常说的搜库。那么接下来我就来分享一下从课程中学习到的搜库背景知识、搜库工具和算法,以及对搜索结果的评估。 1. 背景介绍 质谱,听上去很高大上,无论有多贵重,都是由三部分组成的:离子源+质量分析器+检测器。 大伙儿知道,一台质谱可以不止一个离子源\分析器\检测器,可以把几种串联起来,针对不同分析需要来使用。 我们先来说说离子源。蛋白质谱所使用的ESI(Electrospray ionization)电喷雾离子化,对蛋白质组学来说是一个标志性的发明!因为是直接从液相进行离子化,使它与LC(液相色谱)的联用变得更加容易了,我们可以先用LC将非常复杂的肽段混合物进行预分离,减少每次分析物的复杂度,然后分离的肽段可以直接进入ESI,形成电离喷雾。 那么,ESI喷雾是怎么形成的呢?简单来说,分离柱前端有一个小开口,被分析物根据质量及电荷的不同,依次通过前端的小开口。小开口处加了电压,刚开始,静电力与表面张力相同,当加大静电力使它大于表面张力的时候,液膜破裂,形成无数带电的小液滴,就形成喷雾了。像现在比较新的nanoESI技术,LC的流速就更加慢,离子化的效果也更好。觉得以上描述还不够形象的童鞋,直接看图吧: 说完了离子源,接下来我们来说质量分析器,这是质谱仪里最重要的一部分。我们通常听到的各种质谱仪的名字,就是根据质量分析器的类型来命名的。我们样品中各组分在离子源中发生电离,并经加速电场的作用后,形成离子束,进入质量分析器中。质量分析器将带电离子根据其质荷比加以分离,记录各种离子的质量数和丰度,用于后续定性与定量的分析。 质量分析器有两个主要的技术参数:质量范围和分辨率。质量范围是指是所能测定的质荷比的范围,它决定了咱们能检测到的离子的范围。比如,ESI离子源能产生许多m/z大于3000的离子,如果你选的质量分析器的上限达不到3000,那么3000以上的离子你就检测不出来了。 然而,另一个更为重要的指标,就是质量分析器的分辨率!先上个公式描述: 分辨率=观测的一个质谱峰的质荷比/半峰高处的峰宽(FWHM) 啥意思呢?比如下图中最左边的那个峰,它的质荷比是1,085.55,峰高一半的地方的峰宽值是0.217,于是: 分辨率=1,085.55/0.217=5,000 如果这么讲还是不太明白,那你可以简单理解为,质谱分辨率越高,我们将得到越尖越细的谱峰。你可能会问:谱峰又尖又细的好处是什么?这是个好问题!事实上,分辨率可以表征两个相邻的谱峰在质谱中被区分开的能力。大家通过下图感受一下不同分辨率的质谱仪能给我们多么不同的谱峰图。 图中以Glucagon(胰高血糖素)为例,展示了不同分辨率的质谱仪给出的谱峰。当分辨率是1000时,只能看一个很宽的峰(蓝色);分辨率增加到3000时,峰窄一些(红色),但还感受不到明显的差别;当提高到10000时,很明显能看到,其实这里包含了8个峰(绿色);再提高到30000的时候,半峰宽更窄,两个相邻的峰可以彻底地被分开(黑色)。显然,我们在分辨率为1000或3000,不能准确的检测被分析肽段的精确分子量, 从而导致谱图无法匹配或者发生错配。 不同的质量分析器有不同的分辨率,通常的顺序是:傅里叶变换质谱分辨率最高,但造价太贵;其次是Orbitrap(轨道阱系列),分辨率远远高于其它质谱;再次是TOF(时间飞行质谱);然后是离子阱(Ion Trap),最后是四级杆质谱(Quadrupole)。 这里我多说一句,分辨率高固然好,但价格肯定就贵,选择质谱仪的时候要根据咱们自己的研究目的以及预算范围啦! 然而,要对肽段进行鉴定,一级质谱显然是办不到的,我们没法根据肽段离子m/z的值就推断出这个肽段由哪些氨基酸残基组成(可能的组合非常多),以及序列顺序是怎么样的,对吧?所以,鉴定肽段还需要二级质谱。 什么是二级质谱呢?简单来说,肽段混合物通过一级质谱得到了一级谱图,然后从中选择一个肽段,通过一些方法,比如,与随性气体进行碰撞,把肽段碰碎,得到碎片离子,再形成二级谱图。我们通过观察碎片离子的质量分布来推断肽断的残基组成,最后再反推出蛋白质是什么。上个图,帮助大家理解一下二级质谱是怎么来的。 在上一段,我提到是从一级质谱中“选择”一个肽段进入二级质谱。这里看似讲得云淡风轻,事实上怎么选却是一个很关键的问题!通常选择的方法我们可以叫做“TOP”法(这是我自己起的名字),比如TOP15就是指从一级谱里选前15个高度的峰,每一次分离一个肽段,然后对这个肽段进行扫描,得到二级谱图。 大家发现了没有?如果一个肽段在一级谱图中没有进入TOP15,那它连打二级谱图的资格都没有!原来质谱的世界竞争也是如何残酷!二级质谱能扫描哪些肽段是由一级质谱决定的,所以我们将这种方法称为“数据依赖性采集(DDA, data dependent acquisition)”! 明白了吧,DDA这个名字就是这么来的!下次大伙儿再听到有人说DDA,心里不会再一百个问号飞过了吧? 咱们细想一下就不难发现,如果一个蛋白的浓度不够高,也就是说,它的肽段在一级谱图中很难成为那些TOPs,那么它能进入二级质谱的可能性基本上没有。这就是为什么低峰度蛋白很难被鉴定到!这也就是为什么我们在做比如血液这种样品的时候,一定要去除血红蛋白等高峰度蛋白(如果你想鉴定的蛋白不是血红蛋白的话)! 很显然,DDA方法的局限性就摆在那里!这叫想要研究低峰度蛋白的科学家们怎么忍?于是,一种叫做数据非依赖性采集(DIA)的新方法就应运而生了!关于这种方法的原理,下一篇推文会详扒。 我们再通过以下这个图来感受一下一级谱图与二级谱图之间的关系: 比如,第一个时间点,我们先进行MS1扫描,然后选一个峰高的肽段进行MS2扫描,依次类推。在一些扫描速度比较快的质谱仪里,一个MS1谱图可以进行80张MS2的扫描。 好,我们搞清楚了二级质谱是怎么来的,那么我们怎么根据检测到的离子信息来推测这是什么氨基酸呢?可能你会说,这还不简单么?根据分子量呀! 没错,不同的氨基酸,它的分子量不就是一个简单的值吗?然而,这件事却并没有这么简单,因为这个世界上还存在一个神奇的东西,它的名字叫同位素! 比如说碳元素,最常见的是原子量12的这种,我们叫C12,然而它还有一个同样很稳定的好基友,C13(多一个中子)。于是,我们得考虑到这两种稳定同位素的含量(百度百科说C13占 1.11%,C12占98.89%),对于一个氨基酸而言,我们就会得到两个不同的分子量: --单同位素分子量,也就是只包含比例最高的那一种同位素的分子量; --平均分子量,也就是包含了多种同位素的平均分子量。 为啥说平均呢?因为当肽段分子量越大,含有各种同位素的可能性及不同组合就越多,我们如果把每一种组合都算一遍分子量,这样会得到一个长长的list,到时候做谱图匹配时用哪一个值呢?也没谱。所以干脆用一个平均值来表示。 我们通过下表来感受一下各种不同的氨基酸残基的单同位素分子量与平均分子量有多大的区别: 可能你又会问,这两个不同的分子量分别在什么情况下用呢?这里又要说到分辨率了,如果咱们用的是高分辨率质谱仪,不同的同位素峰会被明显地分开,也就是说,谱图里我们能看几个同位素峰,这时我们就可以使用单同位素分子量,可以与相应的单同位素峰准确对应。但在低分辨率质谱仪里,这些峰很可能混在一起,看上去只是一个峰,这种情况下,也没办法,只能用平均分子量去近似一下了。 下面这个图可以很形象地展示出,单同位素分子量与平均分子量在质谱图上差别有多大。在高分辨质谱看来,这完全就是两种不同的离子了。上面我们也说了,根据平均分子量来计算,结果并不准确,但用单同位素分子量来计算,就可以准确对应了。 除了同位素,还有一个因素我们也需要考虑,那就是肽段碎裂进入二级质谱时,可能会形成三种不同的离子类型,这就是我们通常所说的by离子,ax离子和cz离子。 之所以会形成不同的离子对,是因为不同的碎裂方法,造成肽段断裂的位置不同。大伙儿看看上面这个图就明白了。当我们使用CID(碰撞诱导解离)或HCD(High-energy C-trap Dissociation)碎裂时,与惰性气体碰撞的是C-N键这里,C端生成y离子,N端生成b离子,这是二级质谱产生的最常见的离子对了。当我们使用ETD(电子转移解离)碎裂时,因为有一个电子反应的过程,在加上电子后才产生的碎裂,它的断裂位置可能出现在N-C键这里,形成cz离子,而TOF类仪器可能会产生ax离子。 离子类型的信息需要传递给后续的搜库步骤(通常我们在搜库软件中指定了仪器类型,软件就会自动匹配离子类型),计算机需要模拟最可能的碎裂位置,生成对应的理论谱图,然后拿来与实际谱图比对。我们以by离子为例,来看看对一个肽段来说,它可能碎裂成哪些碎片离子: 那么它可能会生成如下这样的谱图: 从谱图上看,这个肽段所有的by离子都检测到了。通常来说,对于丰度不错,长短合适的肽段,在高精度质谱仪上被完整捕获到的情况是很常见的。通常情况下50%-80%的by离子都能被捕获到。 内容有点多,估计大伙儿也看得有些累了,今天的笔记分享就到这儿吧,下一篇我们接着说定性检测里的搜库工具、结果评估,以及定量检测的各种背景知识。

上一篇:在线代理网

下一篇:北大新生